本章概要
数据加载、存储与文件格式
数据加载、存储与文件格式
读取文本格式数据
read_csv 默认是按照逗号分割,也可设定其他分割符
df = pd.read_csv('file', sep='|')
也可以使用read_table,但是必须要指定分隔符
df = pd.read_table('examples/ex1.csv', sep=',')
一些参数设置
pd.read_csv('examples/ex2.csv', header=None)
# 一些文件没有列标题,可以设置文件头为空 pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
# 也可以为没有列标题的文件自定义列标题 pd.read_csv('examples/ex2.csv', names=names, index_col='message')
# 自定义的列标题中的message列放到索引位置 parsed = pd.read_csv('examples/csv_mindex.csv', index_col=['key1', 'key2'])
# 使用文件内多个列做成层次化索引 result = pd.read_table('examples/ex3.txt', sep='\s+')
# 有些时候表格不是按照固定的分割符去分割字段的,可以在分隔符参数传入正则表达式 这里的\s+表示的是匹配空格符,空格,制表符,换页符 pd.read_csv('examples/ex4.csv', skiprows=[0, 2, 3])
# 有些文件可能会有一些注释,描述性文字在文件头,可以通过skiprows参数跳过指定行 result = pd.read_csv('examples/ex5.csv')
pd.isnull(result)
# 判断dataframe里面的每个值是否为空,在值的位置返回布尔值 result = pd.read_csv('examples/ex5.csv', na_values=['NULL'])
# 可以接受列表来表示缺失值的字符串 sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
pd.read_csv('examples/ex5.csv', na_values=sentinels)
# 可以用字典为指定列定制不同的NA标记值
逐块读取文本文件
在处理大文件时,可能只是想读取文件的一小部分或逐块对文件进行迭代。
pd.options.display.max_rows = 10
设置大文件的dataframe显示10行,前5后5
pd.read_csv('examples/ex6.csv', nrows=5)
# 只读取5行 chunker = pd.read_csv('ch06/ex6.csv', chunksize=1000)
chunker
<pandas.io.parsers.TextParser at 0x8368250>
# read_csv所返回的这个TextParser对象使你可以根据chunksize对文件进行逐块迭代。 chunker = pd.read_csv('examples/ex6.csv', chunksize=1000) tot = Series([])
for piece in chunker:
tot = tot.add(piece['key'].value_counts(), fill_value=0) tot = tot.sort_values(ascending=False)
# 我们可以迭代处理ex6.csv,将值计数聚合到"key"列中
数据写出到文本格式
data = pd.read_csv('test/ex5.csv')
# 读取文件到dataframe data.to_csv('test/out.csv')
# 将数据写入文件,默认逗号分割 data.to_csv(sys.stdout, sep='|')
# 也可以设定分隔符 data.to_csv(sys.stdout, na_rep='NULL')
# 缺失值在输出结果中会被表示为空字符串 data.to_csv(sys.stdout, index=False, header=False)
#可以禁用行列索引 data.to_csv(sys.stdout, index=False, columns=['a', 'b', 'c'])
# 还可以指定写入你需要的列,并按顺序排列 series.to_csv('examples/tseries.csv')
# series也有写如的to_csv方法
处理分隔符格式
大部分存储在磁盘上的表格型数据都能用pandas.read_table进行加载。然而,有时还是需要做一些手工处理。由于接收到含有畸形行的文件而使read_table出毛病的情况并不少见。为了说明这些基本工具,看看下面这个简单的CSV文件:
In [1]: !cat examples/ex7.csv
"a","b","c"
"","",""
"","",""
对于任意单字符分隔符文件,可以直接使用内置的csv模块,将任意已打开的文件或文件型的对象传给csv.reader
import csv
f = open('examples/ex7.csv')
reader = csv.reader(f)
In [2]: for line in reader:
....: print(line)
['a', 'b', 'c']
['', '', '']
['', '', '']
现在,为了使数据格式合乎要求,你需要对其做一些整理工作。我们一步一步来做。首先,读取文件到一个多行的列表中:
In [3]: with open('examples/ex7.csv') as f:
....: lines = list(csv.reader(f))
然后,我们将这些行分为标题行和数据行:
In [4]: header, values = lines[0], lines[1:]
然后,我们可以用字典构造式和zip(*values),后者将行转置为列,创建数据列的字典:
In [5]: data_dict = {h: v for h, v in zip(header, zip(*values))}
In [6]: data_dict
Out[7]: {'a': ('', ''), 'b': ('', ''), 'c': ('', '')}
CSV文件的形式有很多。只需定义csv.Dialect的一个子类即可定义出新格式(如专门的分隔符、字符串引用约定、行结束符等):
class my_dialect(csv.Dialect):
lineterminator = '\n'
delimiter = ';'
quotechar = '"'
quoting = csv.QUOTE_MINIMAL
reader = csv.reader(f, dialect=my_dialect)
各个CSV语支的参数也可以用关键字的形式提供给csv.reader,而无需定义子类:
reader = csv.reader(f, delimiter='|')
要手工输出分隔符文件,你可以使用csv.writer。它接受一个已打开且可写的文件对象以及跟csv.reader相同的那些语支和格式化选项:
with open('mydata.csv', 'w') as f:
writer = csv.writer(f, dialect=my_dialect)
writer.writerow(('one', 'two', 'three'))
writer.writerow(('', '', ''))
writer.writerow(('', '', ''))
writer.writerow(('', '', ''))
其他格式的数据读取
https://www.jianshu.com/p/047d8c1c7e14,有需求的时候看一下就好了,没必要太关注