题目描述
*有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱
输入输出格式
输入格式:
输入两个整数M,N.1<=M<=10^8,1<=N<=10^12
输出格式:
可能越狱的状态数,模100003取余
输入输出样例
输入样例#1:
2 3
输出样例#1:
6
说明
6种状态为(000)(001)(011)(100)(110)(111)
/*题目要求越狱方案数,而越狱方案数等于总方案数-非越狱方案数
总数显而易见是m^n
非越狱方案数:
使任意两个房间非同一宗教,则只需满足每一个房间与前一个房间的宗教不同即可,所以推出
S=m*(m-1)*(m-1)*(m-1)*...*(m-1)[(m-1)有n个]=m*(m-1)^(n-1);
ans=m^n-m*(m-1)^(n-1);//注意判负数
*/
#include<cstdio>
using namespace std;
typedef long long ll;
ll n,m,ans,mod=;
ll fpow(ll a,ll p){
ll res=;
for(;p;p>>=,a=a*a%mod) if(p&) res=res*a%mod;
return res;
}
int main(){
scanf("%lld%lld",&m,&n);
ans=(fpow(m,n)-m%mod*fpow(m-,n-))%mod;
if(ans<) ans+=mod;//WA*n
printf("%lld",ans);
return ;
}