Java高并发程序设计学习笔记(十):并发调试和JDK8新特性

时间:2021-07-19 17:57:08

转自:https://blog.csdn.net/dataiyangu/article/details/87631574

多线程调试的方法
使用Eclipse进行多线程调试
线程dump及分析
分析死锁案例
代码
jstack调试
jps命令找到当前这个java的进程号
运行jstack命令
JDK8对并发的新支持
LongAdder
CompletableFuture
基本
异步执行
工厂方法:
流式调用
组合多个CompletableFuture
StampedLock
StampedLock的实现思想
多线程调试的方法
使用Eclipse进行多线程调试
看如下一段代码:

public class UnsafeArrayList {
static ArrayList al=new ArrayList();
static class AddTask implements Runnable{
@Override
public void run() {
try {
Thread.sleep(100);
} catch (InterruptedException e) {}
for(int i=0;i<1000000;i++)
al.add(new Object());
}
}
public static void main(String[] args) throws InterruptedException {
Thread t1=new Thread(new AddTask(),"t1");
Thread t2=new Thread(new AddTask(),"t2");
t1.start();
t2.start();
Thread t3=new Thread(new Runnable(){
@Override
public void run() {
while(true){
try {
Thread.sleep(1000);
} catch (InterruptedException e) {}
}
}
},"t3");
t3.start();
}
}

ArrayList不是线程安全的。
Java高并发程序设计学习笔记(十):并发调试和JDK8新特性

把断点打到ArrayList的add方法处,发现还是在classLoader层面上的,并没有到达我们的应用层的实现。

Java高并发程序设计学习笔记(十):并发调试和JDK8新特性

上面的条件断点只有当不是主线程的时候才会生效,通过上面的程序不难看出,整个应用层面和主线程并没有太大的关系,主要和线程t1 t2有关系

 Java高并发程序设计学习笔记(十):并发调试和JDK8新特性

Java高并发程序设计学习笔记(十):并发调试和JDK8新特性

通过打断点的方式复现问题发现

public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
1
2
3
4
5
是在ensureCapacityInternal(size + 1);这行出现了问题,t1中size变成了9,t2size++,这个时候t1并不知情,导致size不一致,·8导致报错。

线程dump及分析
jstack 3992 可以导出当前虚拟机所有运行的线程。
在%JAVA_HOME%/bin目录下面(jstack 3992 )

分析死锁案例
代码
代码简介:东西南北四个小车形成的死锁

import java.util.concurrent.locks.ReentrantLock;

public class DeadLock extends Thread {
protected Object myDirect;
static ReentrantLock south = new ReentrantLock();
static ReentrantLock north = new ReentrantLock();
static ReentrantLock west = new ReentrantLock();
static ReentrantLock east = new ReentrantLock();

public DeadLock(Object obj){
this.myDirect = obj;
if (myDirect == south) {
this.setName("south");
}
if (myDirect == north) {
this.setName("north");
}
if (myDirect == west) {
this.setName("west");
}
if (myDirect == east) {
this.setName("east");
}

}

@Override
public void run() {
if (myDirect == south) {
try {
west.lockInterruptibly();
Thread.sleep(500);
south.lockInterruptibly();
System.out.println("car to south has passed");
} catch (InterruptedException e) {
e.printStackTrace();
System.out.println("car to south is killed");
}finally {
if (west.isHeldByCurrentThread())
west.unlock();
if (south.isHeldByCurrentThread())
south.unlock();
}
}
if (myDirect == north) {
try {
east.lockInterruptibly();
Thread.sleep(500);
north.lockInterruptibly();
System.out.println("car to south has passed");
} catch (InterruptedException e) {
e.printStackTrace();
System.out.println("car to south is killed");
}finally {
if (east.isHeldByCurrentThread())
east.unlock();
if (north.isHeldByCurrentThread())
north.unlock();
}
}
if (myDirect == west) {
try {
north.lockInterruptibly();
Thread.sleep(500);
west.lockInterruptibly();
System.out.println("car to south has passed");
} catch (InterruptedException e) {
e.printStackTrace();
System.out.println("car to south is killed");
}finally {
if (north.isHeldByCurrentThread())
north.unlock();
if (west.isHeldByCurrentThread())
west.unlock();
}
}
if (myDirect == east) {
try {
south.lockInterruptibly();
Thread.sleep(500);
east.lockInterruptibly();
System.out.println("car to south has passed");
} catch (InterruptedException e) {
e.printStackTrace();
System.out.println("car to south is killed");
}finally {
if (south.isHeldByCurrentThread())
south.unlock();
if (east.isHeldByCurrentThread())
east.unlock();
}
}
}

public static void main(String[] args) throws InterruptedException {
DeadLock car2South = new DeadLock(south);
DeadLock car2North = new DeadLock(north);
DeadLock car2West = new DeadLock(west);
DeadLock car2East = new DeadLock(east);
car2South.start();
car2East.start();
car2North.start();
car2West.start();
Thread.sleep(1000);

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
运行结果:


1
什么也没有输出,程序还在不断的运行着。

jstack调试
jps命令找到当前这个java的进程号
➜ ~ jps
1682 Launcher
1714 Jps
1683 DeadLock
1397 RemoteMavenServer
1370
1
2
3
4
5
6
运行jstack命令
jstack 1683
1
jstack -h
1
发现-l参数可以看到更多的参数

jstack -l 1683
1
结果:

"west" #12 prio=5 os_prio=31 tid=0x00007ff6cc062000 nid=0x3d03 waiting on condition [0x0000700006ab7000]
java.lang.Thread.State: WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x000000079578bda8> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)
at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:836)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchronizer.java:897)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1222)
at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335)
at DeadLock.run(DeadLock.java:65)

Locked ownable synchronizers:
- <0x000000079578bd78> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)

"north" #11 prio=5 os_prio=31 tid=0x00007ff6cd843800 nid=0x3f03 waiting on condition [0x00007000069b4000]
java.lang.Thread.State: WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x000000079578bd78> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)
at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:836)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchronizer.java:897)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1222)
at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335)
at DeadLock.run(DeadLock.java:49)

Locked ownable synchronizers:
- <0x000000079578bdd8> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)

"east" #13 prio=5 os_prio=31 tid=0x00007ff6cd843000 nid=0x4103 waiting on condition [0x00007000068b1000]
java.lang.Thread.State: WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x000000079578bdd8> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)
at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:836)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchronizer.java:897)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1222)
at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335)
at DeadLock.run(DeadLock.java:81)

Locked ownable synchronizers:
- <0x000000079578bd48> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)

"south" #10 prio=5 os_prio=31 tid=0x00007ff6cd842000 nid=0x3b03 waiting on condition [0x00007000067ae000]
java.lang.Thread.State: WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x000000079578bd48> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)
at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:836)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchronizer.java:897)
at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1222)
at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335)
at DeadLock.run(DeadLock.java:33)

Locked ownable synchronizers:
- <0x000000079578bda8> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)
- Found one Java-level deadlock:
=============================
"west":
waiting for ownable synchronizer 0x000000079578bda8, (a java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by "south"
"south":
waiting for ownable synchronizer 0x000000079578bd48, (a java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by "east"
"east":
waiting for ownable synchronizer 0x000000079578bdd8, (a java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by "north"
"north":
waiting for ownable synchronizer 0x000000079578bd78, (a java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by "west"

Java stack information for the threads listed above:
===================================================
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
可以看到east中有这句话:parking to wait for <0x000000079578bdd8>
south中Locked ownable synchronizers:
- <0x000000079578bda8> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)
可以知道east在等待0x000000079578bdd8,而0x000000079578bdd8是被south持有的。以此类推。

同样
“west”:
waiting for ownable synchronizer 0x000000079578bda8, (a java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by “south”
也是能看出具体的原因。

末尾更清楚:

=============================
"west":
waiting for ownable synchronizer 0x000000079578bda8, (a java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by "south"
"south":
waiting for ownable synchronizer 0x000000079578bd48, (a java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by "east"
"east":
waiting for ownable synchronizer 0x000000079578bdd8, (a java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by "north"
"north":
waiting for ownable synchronizer 0x000000079578bd78, (a java.util.concurrent.locks.ReentrantLock$NonfairSync),
which is held by "west"

Java stack information for the threads listed above:
===================================================
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
JDK8对并发的新支持
LongAdder
– 和AtomicInteger类似的使用方式
– 在AtomicInteger上进行了热点分离
– public void add(long x)
– public void increment()增加一
– public void decrement()减一
– public long sum() 因为是分离成16份,这里是一个求和的操作
– public long longValue() 同上
– public int intValue() Long转化成整形
性能比AtomicLong高很多,因为LongAdder是类似于HashMao的热点分离。
示意:

cas更新
线程一-------->cell1 |
线程二-------->cell2 |---sum---->
线程三-------->cell3 |----求和---> value
线程四-------->cell4 |
1
2
3
4
5
基本思想:
如上,当高并发的时候,将一个数分解成多个cell,线程一访问cell1,线程二访问cell2,以此类推,从而减少冲突的概率,但是当并发的线程数极少的时候,将数分成数组,则会消耗很大的性能,起到相反的作用,所以Longadd本身是有优化的,本身通过base数据(类似于AtomicLong),当发现一次冲突的时候就分成两个,在发现一次冲突分成四个,以此类推。

CompletableFuture
基本
– 实现CompletionStage接口(40余个方法)
– Java 8中对Future的增强版
– 支持流式调用

stage.thenApply(x -> square(x)).thenAccept(x -> System.out.print(x)).thenRun(() ->
System.out.println())
1
2
完成后得到通知

public static class AskThread implements Runnable {
CompletableFuture <Integer> re = null;
public AskThread(CompletableFuture <Integer> re) {
this.re = re
}
@Override
public void run() [
int myRe = 0;
try {
//返回future值的平方
myRe = re.get) * re.get();
} catch (Exception e) {
System.out.println(myRe);
}
public static void main(String[] args) throws InterruptedException {
final CompletableFuture <Integer> future = new CompletableFuture<>();
//将future传到线程中
new Thread(new AskThread(future)).start();
//模拟长时间的计算过程
Thread.sleep(1000);
//告知完成结果
future.complete(60);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
跟前面的future模式不同的是,前面的future模式完成是系统自己完成的,这里的完成是能够开发者自己定义的,如上面的代码future.complete(60);

异步执行
public static Integer calc(Integer para) {
try {
// 模拟一个长时间的执行
Thread.sleep(1000);
} catch (InterruptedException e) {
}
return para*para;
}
public static void main(String[] args) throws InterruptedException, ExecutionException {
final CompletableFuture<Integer> future =
//supplyAsync工厂方法,能够得到一个CompletableFuture的实例,
//并不是通过new出来的,内部会帮我们创建一个,能够直接得到一个实例,然后调动calc
//calc中的执行类似上面的代码,return平法。
CompletableFuture.supplyAsync(() -> calc(50));
System.out.println(future.get());
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
工厂方法:
static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier);
static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor); static CompletableFuture<Void> runAsync(Runnable runnable);
static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor);
1
2
3
Executor executor就是线程池,supplyAsync和runAsync的区别是supplyAsync是有返回值的,runAsync就是一个单纯Runnable接口,没有返回值。

流式调用
public static Integer calc(Integer para) {
try {
// 模拟一个长时间的执行
Thread.sleep(1000);
} catch (InterruptedException e) {
}
return para*para;
}
public static void main(String[] args) throws InterruptedException, ExecutionException {
CompletableFuture<Void> fu=CompletableFuture.supplyAsync(() -> calc(50))
.thenApply((i)->Integer.toString(i)) .thenApply((str)->"\""+str+"\"") .thenAccept(System.out::println);
fu.get();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
calc返回平方操作,Integer.toString转化成String,thenApply((str)->"""+str+""") 在String两边加引号,thenAccept(System.out::println)输出结果。fu.get(); 看看得到结果了没有。

组合多个CompletableFuture
public <U> CompletableFuture<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn)
1
public static Integer calc(Integer para) {
return para/2;
}
public static void main(String[] args) throws InterruptedException, ExecutionException {
CompletableFuture<Void> fu =
CompletableFuture.supplyAsync(() -> calc(50)) .thenCompose((i)->CompletableFuture.supplyAsync(() -> calc(i))) .thenApply((str)->"\"" + str + "\"").thenAccept(System.out::println);
fu.get();
}
1
2
3
4
5
6
7
8
thenCompose除以四,就是五十先除以四,再除以四。
结果

"12"
1
StampedLock
– 读写锁的改进
– 读不阻塞写
读的时候发生了写,不应该不让写操作,而应该重读。
因为:
当读太多的时候,可能出现写不进去的现象,写饥饿。
stemp时间戳

public class Point {
private double x, y;
private final StampedLock sl = new StampedLock();
void move(double deltaX, double deltaY) { // an exclusively locked method long stamp = sl.writeLock();
try {
x += deltaX;
y += deltaY;
} finally {
sl.unlockWrite(stamp);
}
}
double distanceFromOrigin() { // A read-only method
//tryOptimisticRead乐观读,即上面提到的思想
long stamp = sl.tryOptimisticRead();
double currentX = x, currentY = y;
//验证stemp,如果读的过程中,进行了写操作,返回零或者其他的数,拒绝操作
//如果在读x的过程中修改了y,看到上面的move函数,对sl加锁解锁,每次的stemp值都是不一样的
//和这里的对比
if (!sl.validate(stamp)) {
//如果不支持乐观读,就用最原始的读写锁的方法。
stamp = sl.readLock();
try {
currentX = x;
currentY = y;
} finally {
sl.unlockRead(stamp);
}
}
return Math.sqrt(currentX * currentX + currentY * currentY);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
StampedLock的实现思想
– CLH自旋锁
– 锁维护一个等待线程队列,所有申请锁,但是没有成功的线程都记录在这个队列中。每一个节点(一个 节点代表一个线程),保存一个标记位(locked),用于判断当前线程是否已经释放锁。
– 当一个线程试图获得锁时,取得当前等待队列的尾部节点作为其前序节点。并使用类似如下代码判断前 序节点是否已经成功释放锁:
示意代码:

while (pred.locked) { }
1
StampedLock的实现思想
– 不会进行无休止的自旋,会在在若干次自旋后挂起线程
上面(while)只是一个示意的代码,不会无休止的自旋
Java高并发程序设计学习笔记(十):并发调试和JDK8新特性

简单来说就是每次执行自己的时候先看看前面的锁释放了没有,以此类推。


---------------------
作者:Leesin Dong
来源:CSDN
原文:https://blog.csdn.net/dataiyangu/article/details/87631574
版权声明:本文为博主原创文章,转载请附上博文链接!