2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 Frequent Subsets Problem

时间:2020-11-27 17:54:07

题目链接

  1. Frequent Subsets Problem


  •  1000ms
  •  131072K

The frequent subset problem is defined as follows. Suppose UU={1, 2,\ldots,N} is the universe, and S_{1}S1S_{2}S2,\ldots,S_{M}SM are MM sets over UU. Given a positive constant \alphaα0<\alpha \leq 10<α1, a subset BB (B \neq 0B0) is α-frequent if it is contained in at least \alpha MαM sets of S_{1}S1S_{2}S2,\ldots,S_{M}SM, i.e. \left | \left \{ i:B\subseteq S_{i} \right \} \right | \geq \alpha M{i:BSi}αM. The frequent subset problem is to find all the subsets that are α-frequent. For example, let U=\{1, 2,3,4,5\}U={1,2,3,4,5}M=3M=3\alpha =0.5α=0.5, and S_{1}=\{1, 5\}S1={1,5}S_{2}=\{1,2,5\}S2={1,2,5}S_{3}=\{1,3,4\}S3={1,3,4}. Then there are 33 α-frequent subsets of UU, which are \{1\}{1},\{5\}{5} and \{1,5\}{1,5}.

Input Format

The first line contains two numbers NN and \alphaα, where NN is a positive integers, and \alphaα is a floating-point number between 0 and 1. Each of the subsequent lines contains a set which consists of a sequence of positive integers separated by blanks, i.e., line i + 1i+1 contains S_{i}Si1 \le i \le M1iM . Your program should be able to handle NN up to 2020and MM up to 5050.

Output Format

The number of \alphaα-frequent subsets.

样例输入

15 0.4
1 8 14 4 13 2
3 7 11 6
10 8 4 2
9 3 12 7 15 2
8 3 2 4 5

样例输出

11

题目来源

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

题意:现在给你一个n,再给你不多于50组的数据(及大集合)(每一行算一组数据)(每组数据的数字个数未知,且无重复,且数字不大于n)

现在让你求出,有多少个不同的     子集出现在这些集合中的概率大于a。

思路:数据不大,n最大20,最多50组数据;

第几组数据     1 2 3 4 5 ... (最多50组)                      

                  1 : 1 0 0 0 0          
                  2 : 1 0 1 1 1           
                  3 : 0 1 0 1 1
                  4 : 1 0 1 0 1
                  5 : 0 0 0 0 1
                  6 : 0 1 0 0 0
                  7 : 0 1 0 1 0
                  8 : 1 0 1 0 1
                  9 : 0 0 0 1 0
                10 : 0 0 1 0 0
                11 : 0 1 0 0 0
                12 : 0 0 0 1 0
                13 : 1 0 0 0 0
                14 : 1 0 0 0 0
                15 : 0 0 0 1 0

                 n  : ..............


压缩成n个LL数字(横着看的二进制)

然后枚举所有的可能的子集合,把这个子集合所有对应的LL数字相与(&)后得到的数字转换成的二进制中1的个数就是包含这个子集合的大集合的个数

例1:存在子集{2,4,8}的大集合有多少个?

(1 0 1 1 1 )& (1 0 1 0 1)&(1 0 1 0 1)=(1 0 1 0 1)代表1,3,5组大集合中含有子集{2,4,8};

例2:存在子集{3,7}的大集合有多少个?

0 1 0 1 1 )& (0 1 0 1 0)=(0 1 0 1 0)代表2,4组大集合中含有子集{3,7};

代码:

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#define LL long long
using namespace std;
int a[55][25];
LL d[25];
char s[100];
int ans=0;
double ci;
int LL1(LL x)
{
int sum=0;
while(x)
{
if(x&1) sum++;
x>>=1;
}
return sum;
}
void dfs(int x,int n,LL w)
{
if(LL1(w)<ci) return ;
if(x>n)
{
ans++;
return ;
}
dfs(x+1,n,w&d[x]);
dfs(x+1,n,w);
return ;
}
int main()
{
memset(a,0,sizeof(a));
memset(d,0,sizeof(d));
int n,k=0;
double m;
scanf("%d%lf",&n,&m);
getchar();
while(gets(s))
{
int la=strlen(s);
int sum=0;
for(int i=0; i<la; i++)
{
if(s[i]==' ')
{
a[k][sum]=1;
sum=0;
continue;
}
sum=sum*10+s[i]-'0';
}
a[k][sum]=1;
k++;
}
ci=k*m-0.0000001;
for(int j=1; j<=n; j++)
for(int i=0; i<k; i++)
d[j]=(d[j]<<1)+a[i][j];
dfs(1,n,(1LL<<51)-1);//(1LL<<51)-1代表二进制50个1(初始化)
printf("%d\n",ans-1);
}

另一种代码:

hash思想吧,把每组数据hash成一个数字。思想类似

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<cstdio>
#define ll long long
#define lz 2*u,l,mid
#define rz 2*u+1,mid+1,r
#define mset(a,x) memset(a,x,sizeof(a))

using namespace std;
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
const double esp=1e-12;
const int maxn=400005;
const int mod=1e9+7;
int dir[4][2]={0,1,1,0,0,-1,-1,0};
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll inv(ll b){if(b==1)return 1; return (mod-mod/b)*inv(mod%b)%mod;}
ll fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n%mod;n=n*n%mod;}return r;}
int a[101];

int main()
{
int n,x,i;
double k;
cin>>n>>k;
n=(1<<n);
mset(a,0);
int top=1;
while(scanf("%d",&x)!=EOF)
{
a[top]+=(1<<(x-1));
if(getchar()=='\n')
top++;
}
int ans=0;
for(i=1;i<n;i++)
{
int c=0;
for(int j=1;j<=top;j++)
{
if((a[j]&i)==i)
c++;
}
if(1.0*c/top>=k-esp)
ans++;
}
cout<<ans<<endl;
return 0;
}