map基本使用
map是变换操作符,对原始Observable发射的每一项数据应用一个你选择的函数生成新的结果,然后返回一个发射这些结果Observable。
但从字面上还是比较难以理解,我们可以用代码示例说明:
Observable.just(1,2,3).map(new Function<Integer, String>() {
@Override
public String apply(Integer integer) throws Exception {
return "This is new result " + integer;
}
}).subscribe(new Consumer<String>() {
@Override
public void accept(String s) throws Exception {
println("accept : " + s +"\n");
}
});
输出结果:
accept : This is new result 1
accept : This is new result 2
accept : This is new result 3
由上面代码可知,执行map操作时,首先接收原始Observable发射的数据,然后根据你的操作生成新的数据并将这些新的数据发射,这时观察者中接收的就是新生成的数据。
下面我们将从源码的角度来分析下:
这里我们首先使用just操作符创建一个Observable来发射指定的数据。关于just如何创建Observable对象,我们这里不做分析,前面文章中已经说明。这里just创建的具体对象为ObservableFromArray。我们直接分析map的源码,我们看到在调用map方法时,我们需要传入一个Function的对象:
/**
* A functional interface that takes a value and returns another value, possibly with a
* different type and allows throwing a checked exception.
*
* @param <T> the input value type
* @param <R> the output value type
*/
public interface Function<T, R> {
/**
* Apply some calculation to the input value and return some other value.
* @param t the input value
* @return the output value
* @throws Exception on error
*/
@NonNull
R apply(@NonNull T t) throws Exception;
}
如上所述,这个接口的功能主要是接收一个值(T),然后返回另一个值(R)。
我们在查看map的方法:
@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public final <R> Observable<R> map(Function<? super T, ? extends R> mapper) {
ObjectHelper.requireNonNull(mapper, "mapper is null");
return RxJavaPlugins.onAssembly(new ObservableMap<T, R>(this, mapper));
}
与之前其它操作符一样的调用逻辑,将当前的Observable对象和生成的Function对象作为参数,生成一个ObservableMap的对象。
public final class ObservableMap<T, U> extends AbstractObservableWithUpstream<T, U> {
final Function<? super T, ? extends U> function;
public ObservableMap(ObservableSource<T> source, Function<? super T, ? extends U> function) {
super(source);
this.function = function;
}
@Override
public void subscribeActual(Observer<? super U> t) {
source.subscribe(new MapObserver<T, U>(t, function));
}
......
}
完成了Observable对象初始化后,我们开始订阅观察者。这里我们选择使用的观察者为Consumer对象。订阅观察者时,执行subscribe方法:
Observable#subscribe
@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public final Disposable subscribe(Consumer<? super T> onNext) {
return subscribe(onNext, Functions.ON_ERROR_MISSING, Functions.EMPTY_ACTION, Functions.emptyConsumer());
}
@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public final Disposable subscribe(Consumer<? super T> onNext, Consumer<? super Throwable> onError,
Action onComplete, Consumer<? super Disposable> onSubscribe) {
ObjectHelper.requireNonNull(onNext, "onNext is null");
ObjectHelper.requireNonNull(onError, "onError is null");
ObjectHelper.requireNonNull(onComplete, "onComplete is null");
ObjectHelper.requireNonNull(onSubscribe, "onSubscribe is null");
LambdaObserver<T> ls = new LambdaObserver<T>(onNext, onError, onComplete, onSubscribe);
subscribe(ls);
return ls;
}
同样的,将在subscribe方法中执行subscribeActual(observer)方法:
@SchedulerSupport(SchedulerSupport.NONE)
@Override
public final void subscribe(Observer<? super T> observer) {
ObjectHelper.requireNonNull(observer, "observer is null");
try {
observer = RxJavaPlugins.onSubscribe(this, observer);
ObjectHelper.requireNonNull(observer, "Plugin returned null Observer");
subscribeActual(observer);
} catch (NullPointerException e) { // NOPMD
throw e;
} catch (Throwable e) {
Exceptions.throwIfFatal(e);
// can't call onError because no way to know if a Disposable has been set or not
// can't call onSubscribe because the call might have set a Subscription already
RxJavaPlugins.onError(e);
NullPointerException npe = new NullPointerException("Actually not, but can't throw other exceptions due to RS");
npe.initCause(e);
throw npe;
}
}
这里其实执行的是ObservableMap中的subscribeActual方法。在subscribeActual方法中,首先会创建一个MapObserver对象,参数t对应的是LambdaObserver。
然后执行source.subscribe方法,source代表的是之前的Observable对象,也就是just创建的ObservableFromArray对象,所以再次调用Observable中subscribe方法,执行subscribeActual,而这次执行的对象是ObservableFromArray,而参数observer具体实现是MapObserver的对象:
public final class ObservableFromArray<T> extends Observable<T> {
final T[] array;
public ObservableFromArray(T[] array) {
this.array = array;
}
@Override
public void subscribeActual(Observer<? super T> s) {
FromArrayDisposable<T> d = new FromArrayDisposable<T>(s, array);
s.onSubscribe(d);
if (d.fusionMode) {
return;
}
d.run();
}
......
}
到这里执行的逻辑与之前分析fromArray操作符用法相同,不再做具体分析。在FromArrayDisposable中具体执行的run方法中:
FromArrayDisposable#run
void run() {
T[] a = array;
int n = a.length;
for (int i = 0; i < n && !isDisposed(); i++) {
T value = a[i];
if (value == null) {
actual.onError(new NullPointerException("The " + i + "th element is null"));
return;
}
actual.onNext(value);
}
if (!isDisposed()) {
actual.onComplete();
}
}
如上此时actual是由MapObserver实现的,我们看下MapObserver的onNext方法:
MapObserver#onNext:
@Override
public void onNext(T t) {
if (done) {
return;
}
if (sourceMode != NONE) {
actual.onNext(null);
return;
}
U v;
try {
v = ObjectHelper.requireNonNull(mapper.apply(t), "The mapper function returned a null value.");
} catch (Throwable ex) {
fail(ex);
return;
}
actual.onNext(v);
}
当调用onNext方法时,通过Function接口回调apply方法获得转换后的数据,然后再通过 actual.onNext(v)方法发射出去。此时的actual中的onNext方法就可以接收新的参数了,而actual就是之前初始化的LambdaObserver对象。通过它可以让Consumer的accept方法中接收该数据。这里的执行逻辑之前已经分析过,这里不再详述。