【差分约束系统】 note

时间:2024-10-09 10:03:44

【差分约束系统】 note

>>>>题目

【题目描述】

最近有一款很火的游戏,叫做八分音符酱,它和马里奥很相似,不过它的跳跃距离是由你的声音大小来控制
的。不过我们现在对玩法就行一些修改:
现有一共有n 个柱子,两个相邻的柱子之间的初始水平距离为1,蠢蠢的jyb 现在在最矮的柱子上,他每次
只能向恰好比这个柱子高的另一个柱子跳跃,最后要跳到最高的柱子上。

jyb 需要从第二个柱子跳到第一个柱子,再跳到第三个柱子。
jyb 的最大声音为d,代表他能在满足 |posi-posj| + |heighti-heightj | ≤d  的两个柱子之间跳跃。

假设我们可以在不改变它们位置的相对顺序的前提下水平移动柱子,调整他们的水平位置(但相邻间隔至少为1,且为整数)。

jyb 想问你:在能从最矮柱子跳到最高柱子的前提下,它们(最矮柱子跳到最高柱子) 的最大水平距离是多少。

【输入描述】

第1 行,1 个整数T, 表示数据组数,对于每组数据:
第1 行,1 个整数n;m,表示一共有多少个柱子。
接下来1 行,有n 个数,hi 表示柱子的高度。保证柱子高度互不相同

【输出描述】

对于每组数据,输出在能从最矮柱子跳到最高柱子的前提下,它们的最大水平距离是多少。如果不能,输出-1

【输入样例1】

2
3 4
3 2 4
3 4
3 2 6

【输出样例1】

2

-1

【输入样例2】

2
5 10
4 2 1 8 10
5 2
10 8 2 1 4

【输出样例】

12

-1

【数据范围及约定】

对于30% 的数据,1 n 100,1 d 1000,1 hi 1000;
•对于100% 的数据,1 T 100,1 n 103,1 d 106,1 hi 106。

>>>>分析

我们不能随意地将水平位置拉开,因为必须要能够从最矮的柱子跳到最高的柱子。

其实就相当于有了很多限制条件,显然这是一个差分约束系统。

先根据柱子的高度排序(初始化时用结构体记录高度和位置)

我们约定,在相邻两柱子,从下标小的向大的建边(以下用u(下标小),v(下标大)表示)

我们有两个约束条件:

1..根据题意:pos[v]-pos[u]+height[v]-height[u]≤d

2..两个相邻的柱子之间距离最少为1::pos[v]-pos[u]≥1

整理后得到

pos[v]-pos[u]≤d-(height[v]-height[u])

于是建边分为两种:

1.从i 到i+1建边,长度为 d-(height[v]-height[u])

2.从i+1到i建边,长度为-1

>>>>代码

#include<bits/stdc++.h>
#define maxn 1005
using namespace std;
struct node
{
int to,nxt,w;
}e[maxn<<];
struct node1
{
int pos,h;
}a[maxn];
int T,n,d,tot,flag,st,ed;
int dis[maxn],head[maxn],in[maxn];
bool vis[maxn];
queue<int> q;
bool cmp(const node1 &x,const node1 &y)
{
return x.h<y.h;
}
void add(int u,int v,int w)
{
e[++tot].to=v;
e[tot].nxt=head[u];
e[tot].w=w;
head[u]=tot;
}
int spfa(int st,int ed)//找最短路
{
memset(dis,,sizeof(dis));
memset(vis,,sizeof(vis));
memset(in,,sizeof(in));
q.push(st),vis[st]=;
in[st]++,dis[st]=;
while(!q.empty())
{
int now=q.front();
q.pop(),vis[now]=;
for(int i=head[now];i;i=e[i].nxt)
{
int v=e[i].to;
if(dis[v]>dis[now]+e[i].w)
{
dis[v]=dis[now]+e[i].w;
if(!vis[v])
{
vis[v]=;
q.push(v);
in[v]++;
if(in[v]>=n+) return -;//判负环
}
}
}
}
return dis[ed];
}
int main()
{
// freopen("note.in","r",stdin);
// freopen("note.out","w",stdout);
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&d);
for(int i=;i<=n;++i)
{
scanf("%d",&a[i].h);
a[i].pos=i;
}
tot=,flag=;
memset(head,,sizeof(head));
sort(a+,a+n+,cmp);
//找到起点和终点
st=min(a[].pos,a[n].pos);
ed=max(a[].pos,a[n].pos);
for(int i=;i<=n-;++i)
{
add(i+,i,-);
//从标号小的边向大的边连
int u=min(a[i].pos,a[i+].pos);
int v=max(a[i].pos,a[i+].pos);
if(d<v-u+a[i+].h-a[i].h)
{
flag=; break;
}
add(u,v,d-a[i+].h+a[i].h);
}
if(flag) printf("%d\n",spfa(st,ed));
else printf("-1\n");
}
}
/*
2
3 4
3 2 4
3 4
3 2 6
*/

完结撒花!