一、代码编写
1.1 单词统计
回顾我们以前单词统计的例子,如代码1.1所示。
1 package counter; 2 3 import java.net.URI; 4 5 import org.apache.hadoop.conf.Configuration; 6 import org.apache.hadoop.fs.FileSystem; 7 import org.apache.hadoop.fs.Path; 8 import org.apache.hadoop.io.LongWritable; 9 import org.apache.hadoop.io.Text; 10 import org.apache.hadoop.mapreduce.Counter; 11 import org.apache.hadoop.mapreduce.Job; 12 import org.apache.hadoop.mapreduce.Mapper; 13 import org.apache.hadoop.mapreduce.Reducer; 14 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 15 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; 16 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 17 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; 18 import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner; 19 20 public class WordCountApp { 21 static final String INPUT_PATH = "hdfs://hadoop:9000/hello"; 22 static final String OUT_PATH = "hdfs://hadoop:9000/out"; 23 24 public static void main(String[] args) throws Exception { 25 26 Configuration conf = new Configuration(); 27 28 final FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), conf); 29 final Path outPath = new Path(OUT_PATH); 30 31 if(fileSystem.exists(outPath)){ 32 fileSystem.delete(outPath, true); 33 } 34 35 final Job job = new Job(conf , WordCountApp.class.getSimpleName()); 36 37 FileInputFormat.setInputPaths(job, INPUT_PATH);//1.1指定读取的文件位于哪里 38 39 job.setInputFormatClass(TextInputFormat.class);//指定如何对输入文件进行格式化,把输入文件每一行解析成键值对 40 41 job.setMapperClass(MyMapper.class);//1.2 指定自定义的map类 42 job.setMapOutputKeyClass(Text.class);//map输出的<k,v>类型。如果<k3,v3>的类型与<k2,v2>类型一致,则可以省略 43 job.setMapOutputValueClass(LongWritable.class); 44 45 job.setPartitionerClass(HashPartitioner.class);//1.3 分区 46 job.setNumReduceTasks(1);//有一个reduce任务运行 47 48 job.setReducerClass(MyReducer.class);//2.2 指定自定义reduce类 49 job.setOutputKeyClass(Text.class);//指定reduce的输出类型 50 job.setOutputValueClass(LongWritable.class); 51 52 FileOutputFormat.setOutputPath(job, outPath);//2.3 指定写出到哪里 53 54 job.setOutputFormatClass(TextOutputFormat.class);//指定输出文件的格式化类 55 56 job.waitForCompletion(true);//把job提交给JobTracker运行 57 } 58 59 /** 60 * KEYIN 即k1 表示行的偏移量 61 * VALUEIN 即v1 表示行文本内容 62 * KEYOUT 即k2 表示行中出现的单词 63 * VALUEOUT 即v2 表示行中出现的单词的次数,固定值1 64 */ 65 static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>{ 66 protected void map(LongWritable k1, Text v1, Context context) throws java.io.IOException ,InterruptedException { 67 // final Counter helloCounter = context.getCounter("Sensitive Words", "hello"); 68 69 final String line = v1.toString(); 70 /* if(line.contains("hello")){ 71 //记录敏感词出现在一行中 72 helloCounter.increment(1L); 73 }*/ 74 final String[] splited = line.split(" "); 75 for (String word : splited) { 76 context.write(new Text(word), new LongWritable(1)); 77 } 78 }; 79 } 80 81 /** 82 * KEYIN 即k2 表示行中出现的单词 83 * VALUEIN 即v2 表示行中出现的单词的次数 84 * KEYOUT 即k3 表示文本中出现的不同单词 85 * VALUEOUT 即v3 表示文本中出现的不同单词的总次数 86 * 87 */ 88 static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable>{ 89 protected void reduce(Text k2, java.lang.Iterable<LongWritable> v2s, Context ctx) throws java.io.IOException ,InterruptedException { 90 long times = 0L; 91 for (LongWritable count : v2s) { 92 times += count.get(); 93 } 94 ctx.write(k2, new LongWritable(times)); 95 }; 96 } 97 98 }
代码 1.1
分析上面代码,我们会发现该单词统计方法的输入输出路径都已经写死了,比如输入路径:INPUT_PATH = "hdfs://hadoop:9000/hello"输出路径:OUT_PATH = "hdfs://hadoop:9000/out"。这样一来,这个算法的输入出路径也就固定死了,想要使用这个算法,相应的数据就必须满足这个固定的路径要求,从而算法的灵活性和可操作性也就大大降低了,也就是说我们的算法,目前还不算是一个通用的算法。所以为了提高算法灵活性和可操作性,应该通过指令运行时参数来指定输入输出路径。
1.2 在命令行运行的单词统计
在命令行运行的单词统计程序,如代码1.2所示。
1 package cmd; 2 3 import java.net.URI; 4 5 import org.apache.hadoop.conf.Configuration; 6 import org.apache.hadoop.conf.Configured; 7 import org.apache.hadoop.fs.FileSystem; 8 import org.apache.hadoop.fs.Path; 9 import org.apache.hadoop.io.LongWritable; 10 import org.apache.hadoop.io.Text; 11 import org.apache.hadoop.mapreduce.Job; 12 import org.apache.hadoop.mapreduce.Mapper; 13 import org.apache.hadoop.mapreduce.Reducer; 14 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 15 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; 16 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 17 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; 18 import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner; 19 import org.apache.hadoop.util.Tool; 20 import org.apache.hadoop.util.ToolRunner; 21 22 public class WordCountApp extends Configured implements Tool{ 23 static String INPUT_PATH = ""; 24 static String OUT_PATH = ""; 25 26 @Override 27 public int run(String[] arg0) throws Exception { 28 INPUT_PATH = arg0[0]; 29 OUT_PATH = arg0[1]; 30 31 Configuration conf = new Configuration(); 32 final FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), conf); 33 final Path outPath = new Path(OUT_PATH); 34 if(fileSystem.exists(outPath)){ 35 fileSystem.delete(outPath, true); 36 } 37 38 final Job job = new Job(conf , WordCountApp.class.getSimpleName()); 39 40 job.setJarByClass(WordCountApp.class);//打包运行必须执行的秘密方法 41 FileInputFormat.setInputPaths(job, INPUT_PATH);//1.1指定读取的文件位于哪里 42 job.setInputFormatClass(TextInputFormat.class);//指定如何对输入文件进行格式化,把输入文件每一行解析成键值对 43 44 job.setMapperClass(MyMapper.class);//1.2 指定自定义的map类 45 job.setMapOutputKeyClass(Text.class);//map输出的<k,v>类型。如果<k3,v3>的类型与<k2,v2>类型一致,则可以省略 46 job.setMapOutputValueClass(LongWritable.class); 47 48 49 job.setPartitionerClass(HashPartitioner.class);//1.3 分区 50 job.setNumReduceTasks(1);//有一个reduce任务运行 51 52 53 job.setReducerClass(MyReducer.class);//2.2 指定自定义reduce类 54 job.setOutputKeyClass(Text.class);//指定reduce的输出类型 55 job.setOutputValueClass(LongWritable.class); 56 57 FileOutputFormat.setOutputPath(job, outPath);//2.3 指定写出到哪里 58 job.setOutputFormatClass(TextOutputFormat.class);//指定输出文件的格式化类 59 60 job.waitForCompletion(true);//把job提交给JobTracker运行 61 return 0; 62 } 63 64 public static void main(String[] args) throws Exception { 65 ToolRunner.run(new WordCountApp(), args); 66 } 67 68 /** 69 * KEYIN 即k1 表示行的偏移量 70 * VALUEIN 即v1 表示行文本内容 71 * KEYOUT 即k2 表示行中出现的单词 72 * VALUEOUT 即v2 表示行中出现的单词的次数,固定值1 73 */ 74 static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>{ 75 protected void map(LongWritable k1, Text v1, Context context) throws java.io.IOException ,InterruptedException { 76 final String[] splited = v1.toString().split("\t"); 77 for (String word : splited) { 78 context.write(new Text(word), new LongWritable(1)); 79 } 80 }; 81 } 82 83 /** 84 * KEYIN 即k2 表示行中出现的单词 85 * VALUEIN 即v2 表示行中出现的单词的次数 86 * KEYOUT 即k3 表示文本中出现的不同单词 87 * VALUEOUT 即v3 表示文本中出现的不同单词的总次数 88 * 89 */ 90 static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable>{ 91 protected void reduce(Text k2, java.lang.Iterable<LongWritable> v2s, Context ctx) throws java.io.IOException ,InterruptedException { 92 long times = 0L; 93 for (LongWritable count : v2s) { 94 times += count.get(); 95 } 96 ctx.write(k2, new LongWritable(times)); 97 }; 98 } 99 100 101 }
代码 1.2
在编写能够在命令行运行的单词统计程序时,我们的类要继承Configured类实现Tool接口,实现Tool接口就要添加一个run()方法。在run()方法中执行我们原来在Main()方法中运行的配置代码。然而run方法如何运行呢?那就要在Main方法中调用run方法,调用方式如代码1.3所示。
1 public static void main(String[] args) throws Exception { 2 ToolRunner.run(new WordCountApp(), args); 3 }
代码 1.3
我们看一下run方法的参数,ToolRunner.run(Tool tool, String[] args),第一参数为Tool接口,我们知道该程序的类就是Tool的实现类所以我们可以,用该程序类的对象来作为参数。他的第二个参数,是一个字符数组args。在这里我们先讲一下,main函数的args参数。这个参数是运行程序前给它的参数。如果你在你程序要用这个参数的话,就需要在运行前指定。比如一个打印helloworld的程序如下:
public class HelloWorld{ public static void main(String[] args) { System.out.println(args[0]); } }
执行命令java HelloWorld ceshi ceshi1 ceshi2,那么在HelloWorld的main方法里面 args就是{"ceshi", "ceshi1", "ceshi2"},打印的结果就是creshi。
经过对main方法的分析,我应该就知道了,run方法的第二个参数就应该是main函数的参数,这样就能够接受命令行所指定的参数了。那么既然输入输出路径由运行时的命令行的参数指定,那么就不需要在代码中指定路径了,所以将INPUT_PATH和OUT_PATH初始化为空。然后在run方法中通过由命令行传过来的参数来进行赋值,如下所示。
INPUT_PATH = arg0[0];//表示输入路径
OUT_PATH = arg0[1];//表示输出路径
而为了我们的程序能够在命令行运行,必须添加“job.setJarByClass(WordCountApp.class);”代码,表示我们的程序以打包的方式运行。
二、运行方式
2.1 将程序以.jar类型导出到桌面
<1> 选择WordCountApp右击选择Export,如图2.1所示。
图 2.1
<2> 选择JAR file,选择Next,如图2.2所示。
图 2.2
<3> 选择Next后,弹出如下界面,如图2.3,再次选择Next。
图 2.3
<4> 选择Next之后,弹出如图2.4的界面,选择Browse。
图 2.4
<5> 选择Browse后,在弹出的界面选择ok,如图2.5所示。
图 2.5
<6> 选择Ok后,直接选择finish即可,如图2.6所示。
图 2.6
2.2 将jar包传到Linux
使用WinScp将程序的jar包传到Linux,如图2.7所示。
图 2.7
2.3 在Linux命令行执行jar包
2.3.1 创建输入输出路径
执行命令:
hadoop fs -mkdir /input
hadoop fs -mkdir /output
2.3.2 编写、上传file文件
执行命令:vi file1
输入内容:
hello word
hello me
执行命令:hadoop fs -put file1 /
2.3.3 执行程序
执行命令:hadoop jar jar.jar hdfs://hadoop:9000/input hdfs: //hadoop:9000/output
运行过程:
14/09/28 20:08:08 WARN mapred.JobClient: Use GenericOptionsParser for parsi ng the arguments. Applications should implement Tool for the same. 14/09/28 20:08:09 INFO input.FileInputFormat: Total input paths to process : 1 14/09/28 20:08:09 INFO util.NativeCodeLoader: Loaded the native-hadoop libr ary 14/09/28 20:08:09 WARN snappy.LoadSnappy: Snappy native library not loaded 14/09/28 20:08:11 INFO mapred.JobClient: Running job: job_201409281916_0001 14/09/28 20:08:12 INFO mapred.JobClient: map 0% reduce 0% 14/09/28 20:09:03 INFO mapred.JobClient: map 100% reduce 0% 14/09/28 20:09:14 INFO mapred.JobClient: map 100% reduce 100% 14/09/28 20:09:14 INFO mapred.JobClient: Job complete: job_201409281916_0001 14/09/28 20:09:14 INFO mapred.JobClient: Counters: 29 14/09/28 20:09:14 INFO mapred.JobClient: Job Counters 14/09/28 20:09:14 INFO mapred.JobClient: Launched reduce tasks=1 14/09/28 20:09:14 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=47675 14/09/28 20:09:14 INFO mapred.JobClient: Total time spent by all reduces waiting after rese rving slots (ms)=0 14/09/28 20:09:14 INFO mapred.JobClient: Total time spent by all maps waiting after reservi ng slots (ms)=0 14/09/28 20:09:14 INFO mapred.JobClient: Launched map tasks=1 14/09/28 20:09:14 INFO mapred.JobClient: Data-local map tasks=1 14/09/28 20:09:14 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=10902 14/09/28 20:09:14 INFO mapred.JobClient: File Output Format Counters 14/09/28 20:09:14 INFO mapred.JobClient: Bytes Written=21 14/09/28 20:09:14 INFO mapred.JobClient: FileSystemCounters 14/09/28 20:09:14 INFO mapred.JobClient: FILE_BYTES_READ=67 14/09/28 20:09:14 INFO mapred.JobClient: HDFS_BYTES_READ=116 14/09/28 20:09:14 INFO mapred.JobClient: FILE_BYTES_WRITTEN=105834 14/09/28 20:09:14 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=21 14/09/28 20:09:14 INFO mapred.JobClient: File Input Format Counters 14/09/28 20:09:14 INFO mapred.JobClient: Bytes Read=21 14/09/28 20:09:14 INFO mapred.JobClient: Map-Reduce Framework 14/09/28 20:09:14 INFO mapred.JobClient: Map output materialized bytes=67 14/09/28 20:09:14 INFO mapred.JobClient: Map input records=2 14/09/28 20:09:14 INFO mapred.JobClient: Reduce shuffle bytes=67 14/09/28 20:09:14 INFO mapred.JobClient: Spilled Records=8 14/09/28 20:09:14 INFO mapred.JobClient: Map output bytes=53 14/09/28 20:09:14 INFO mapred.JobClient: CPU time spent (ms)=35140 14/09/28 20:09:14 INFO mapred.JobClient: Total committed heap usage (bytes)=131665920 14/09/28 20:09:14 INFO mapred.JobClient: Combine input records=0 14/09/28 20:09:14 INFO mapred.JobClient: SPLIT_RAW_BYTES=95 14/09/28 20:09:14 INFO mapred.JobClient: Reduce input records=4 14/09/28 20:09:14 INFO mapred.JobClient: Reduce input groups=3 14/09/28 20:09:14 INFO mapred.JobClient: Combine output records=0 14/09/28 20:09:14 INFO mapred.JobClient: Physical memory (bytes) snapshot=181952512 14/09/28 20:09:14 INFO mapred.JobClient: Reduce output records=3 14/09/28 20:09:14 INFO mapred.JobClient: Virtual memory (bytes) snapshot=752697344 14/09/28 20:09:14 INFO mapred.JobClient: Map output records=4
执行结果:
[root@hadoop Downloads]# hadoop fs -ls /output Found 3 items -rw-r--r-- 1 root supergroup 0 2014-09-28 20:09 /output/_SUCCESS drwxr-xr-x - root supergroup 0 2014-09-28 20:08 /output/_logs -rw-r--r-- 1 root supergroup 21 2014-09-28 20:09 /output/part-r-00000 [root@hadoop Downloads]# hadoop fs -cat /output/part-r-00000 hello 2 me 1 world 1 [root@hadoop Downloads]#