题目描述
对于1 位二进制变量定义两种运算:
运算的优先级是:
先计算括号内的,再计算括号外的。
- “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算。例如:计算表达式A⊕B × C时,先计算 B × C,其结果再与 A 做⊕运算。
现给定一个未完成的表达式,例如+(*_),请你在横线处填入数字0 或者1 ,请问有多少种填法可以使得表达式的值为0 。
输入输出格式
输入格式:
输入文件名为exp.in ,共 2 行。
第1 行为一个整数 L,表示给定的表达式中除去横线外的运算符和括号的个数。
第2 行为一个字符串包含 L 个字符,其中只包含’(’、’)’、’+’、’*’这4 种字符,其中’(’、’)’是左右括号,’+’、’*’分别表示前面定义的运算符“⊕”和“×”。这行字符按顺序给出了给定表达式中除去变量外的运算符和括号
输出格式:
输出文件exp.out 共1 行。包含一个整数,即所有的方案数。注意:这个数可能会很大,请输出方案数对10007 取模后的结果。
输入输出样例
4
+(*)
3
说明
【输入输出样例说明】
给定的表达式包括横线字符之后为:+(*_)
在横线位置填入(0 、0 、0) 、(0 、1 、0) 、(0 、0 、1) 时,表达式的值均为0 ,所以共有3种填法。
【数据范围】
对于20% 的数据有 0 ≤ L ≤ 10。
对于50% 的数据有 0 ≤ L ≤ 1,000。
对于70% 的数据有 0 ≤ L ≤ 10,000 。
对于100%的数据有 0 ≤ L ≤ 100,000。
对于50% 的数据输入表达式中不含括号。
-------------------------
一开始想了一个区间DP的做法f[i][j][0/1]表示i到j为0或1的方案数,内存爆的连编译都不编译
然后想到建表达式树 树形DP,白书上的方法只能拿80分
用 笛卡尔树 建表达式树
有点像treap,key按左右分,value按上下分
表达式树中key就是顺序,本来就按照这个顺序;value是算术优先级,设括号个数为p,'+':p*2+1 '*':p*2+2,value小的在上面
笛卡尔树有O(n)的建树方法:
可以发现key本来有序,新加的元素只能在当前的右链上,有可能吧本来右链上一些元素转到左子树上
用一个stack维护右链上的元素就好了,每次找第一个<=当前的
//
// main.cpp
// 表达式的值树形dp
//
// Created by Candy on 9/6/16.
// Copyright ? 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int N=,MOD=;
int n;
char s[N];
struct node{
int ls,rs;
char op;
}tree[N*];
int cnt=,w[N],root=;
void build(){
int p=,cnt=;
for(int i=;i<=n;i++){
if(s[i]=='(') p++;if(s[i]==')') p--;
if(s[i]=='+') {w[++cnt]=p*+;
tree[cnt].op=s[i];
}
if(s[i]=='*') w[++cnt]=p*+,tree[cnt].op=s[i];;
} int st[N],k,top=-;
for (int i=;i<=cnt;i++)
{
k = top;
while (k >= && w[st[k]] > w[i]) k--;
if(k!=-) tree[st[k]].rs=i;
if (k < top) tree[i].ls=st[k+];
st[++k] = i;
top=k;
}
root=st[];
}
int f[N][];
void dp(int i){//printf("dp %d\n",i);
if(i==) return;
if(f[i][]!=) return;
int ls=tree[i].ls,rs=tree[i].rs;char op=tree[i].op;
dp(ls);dp(rs);
if(op=='+'){
f[i][]=f[ls][]*f[rs][];
f[i][]=f[ls][]*f[rs][]+f[ls][]*f[rs][]+f[ls][]*f[rs][];
}
if(op=='*'){
f[i][]=f[ls][]*f[rs][];
f[i][]=f[ls][]*f[rs][]+f[ls][]*f[rs][]+f[ls][]*f[rs][];
}
f[i][]%=MOD;f[i][]%=MOD;
}
int main(int argc, const char * argv[]) {
scanf("%d%s",&n,s+);
build();
f[][]=f[][]=;
dp(root);
printf("%d",f[root][]%MOD);
return ;
}
当然也可以用stack做,一个操作符栈一个数据栈,数据栈中是0/1的方案数
一开始push一个empty,以后每次一个+ *都push一个empty
//from 题解
//Candy?修改
#include<cstdio>
#include<cstring>
const int mod=;
struct node{
int a,b;
}f[];
const node emp=(node){,};
char s[];
char st[];int n,tp=,fp=; void cal(char op,node &a,node &b){
if(op=='+') a.b=(a.b*(b.a+b.b)+a.a*b.b)%mod,a.a=a.a*b.a%mod;
else a.a=(a.a*(b.a+b.b)+a.b*b.a)%mod,a.b=a.b*b.b%mod;
} int main(){
scanf("%d%s",&n,s);
st[++tp]='('; f[++fp]=emp;
s[n++]=')';
for(int i=;i<n;i++){
if(s[i]=='(')st[++tp]='(';
else if(s[i]==')'){
for(;st[tp]!='(';tp--,fp--)
cal(st[tp],f[fp-],f[fp]);//pop 2 push 1
tp--;// (
}
else{
for(;st[tp]<=s[i]&&st[tp]!='(';tp--,fp--)// '*' < '+'
cal(st[tp],f[fp-],f[fp]);
st[++tp]=s[i],f[++fp]=emp;//every +/* with a number
}
}
return!printf("%d\n",f[].a%mod);
}