一、线程
1.1什么是线程?
线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其它线程共享进程所拥有的全部资源。一个线程可以创建和撤消另一个线程,同一进程中的多个线程之间可以并发执行。由于线程之间的相互制约,致使线程在运行中呈现出间断性。线程也有就绪、阻塞和运行三种基本状态。就绪状态是指线程具备运行的所有条件,逻辑上可以运行,在等待处理机;运行状态是指线程占有处理机正在运行;阻塞状态是指线程在等待一个事件(如某个信号量),逻辑上不可执行。每一个程序都至少有一个线程,若程序只有一个线程,那就是程序本身。线程是程序中一个单一的顺序控制流程。进程内一个相对独立的、可调度的执行单元,是系统独立调度和分派CPU的基本单位指运行中的程序的调度单位。在单个程序中同时运行多个线程完成不同的工作,称为多线程。 以上摘自---百度百科。
1.2 什么是线程安全性?
如果一个类可以安全地被多个线程使用,它就是线程安全的。你无法对此论述提出任何争议,但也无法从中得到更多有意义的帮助。那么我们如何辨别线程安全与非线程安全的类?我们甚至又该如何理解“安全”呢?任何一个合理的“线程安全性”定义,其关键在于“正确性”的概念。在<<JAVA并发编程实践>>书中作者是这样定义的:一个类是是线程安全的,是指在被多个线程访问时,类可以持续进行正确的行为。或当多个线程访问一个类时,如果不用考虑这些线程在运行时环境下的调度和交替执行,并且不需要额外的同步及在调用方代码不必作其他的协调,这个类的行为仍然是正确的,那么称这个类是线程安全的。
1.3 线程的六种状态
线程从创建到销毁期间有六种状态:
- New: 至今尚未启动的线程的状态。
- Runnable :可运行线程的线程状态。
- Blocked :受阻塞并且正在等待监视器锁的某一线程的线程状态。
- Waiting :某一等待线程的线程状态。
- Timed_waiting:具有指定等待时间的某一等待线程的线程状态。
- Terminated:已终止线程的线程状态。线程已经结束执行。
- 如下图所示:
二、Thread类
2.1 属性
//线程名字,通过构造参数来指定 private char name[]; //表示线程的优先级,优先级越高,越优先被执行(最大值为10,最小值为1,默认值为5) private int priority; private Thread threadQ; private long eetop; /* Whether or not to single_step this thread. */ private boolean single_step; //线程是否是守护线程:当所有非守护进程结束或死亡后,程序将停止 private boolean daemon = false; /* JVM state */ private boolean stillborn = false; //将要执行的任务 private Runnable target; /* 线程组表示一个线程的集合。此外,线程组也可以包含其他线程组。线程组构成一棵树,在树中,除了初始线程组外,每个线程组都有一个父线程组。 */ private ThreadGroup group; /* The context ClassLoader for this thread */ private ClassLoader contextClassLoader; /* The inherited AccessControlContext of this thread */ private AccessControlContext inheritedAccessControlContext; /*第几个线程,在init初始化线程的时候用来赋给thread.name */ private static int threadInitNumber; private static synchronized int nextThreadNum() { return threadInitNumber++; } /* ThreadLocal values pertaining to this thread. This map is maintained * by the ThreadLocal class. */ ThreadLocal.ThreadLocalMap threadLocals = null; /* * InheritableThreadLocal values pertaining to this thread. This map is * maintained by the InheritableThreadLocal class. */ ThreadLocal.ThreadLocalMap inheritableThreadLocals = null; /* * The requested stack size for this thread, or 0 if the creator did * not specify a stack size. It is up to the VM to do whatever it * likes with this number; some VMs will ignore it. */ private long stackSize; /* * JVM-private state that persists after native thread termination. */ private long nativeParkEventPointer; /* * Thread ID */ private long tid; /* For generating thread ID */ private static long threadSeqNumber; /* *线程从创建到最终的消亡,要经历若干个状态。 *一般来说,线程包括以下这几个状态:创建(new)、就绪(runnable)、运行(running)、阻塞(blocked)、time waiting、waiting、消亡(dead)。 * */ private volatile int threadStatus = 0;
2.3 start()操作
//启动新创建的线程 public synchronized void start() { /** * This method is not invoked for the main method thread or "system" * group threads created/set up by the VM. Any new functionality added * to this method in the future may have to also be added to the VM. * * A zero status value corresponds to state "NEW". */ /*这个方法不会被主线程调用或通过虚拟机系统线程组创建起来。未来任何添加到该方法里的新功能可能需要加入到虚拟机中 * * 状态new的值是0. * */ if (threadStatus != 0) throw new IllegalThreadStateException(); /* Notify the group that this thread is about to be started * so that it can be added to the group's list of threads * and the group's unstarted count can be decremented. */ /* 通知线程组新线程将要启动,以便它可以添加到线程组列表并且线程组没有开始计数*/ group.add(this); boolean started = false; try { start0(); started = true; } finally { try { if (!started) { group.threadStartFailed(this); } } catch (Throwable ignore) { /* do nothing. If start0 threw a Throwable then it will be passed up the call stack */ } } }
2.3 run()操作
public void run() { if (target != null) { target.run(); } }
2.4 start()和run()之间有什么区别?
2.4.1 代码示例:run()方法使用
package com.game.thread; /** * * @author liulongling * */ public class ThreadTest extends Thread{ public ThreadTest(String name) { super.setName(name); } @Override public void run() { for(int i = 0; i < 5;i++) { System.out.println(super.getName()+":"+i); } } public static void main(String[] args) { ThreadTest test = new ThreadTest("A"); ThreadTest test1 = new ThreadTest("B"); test.run(); test1.run(); if(Thread.activeCount()>=1) { Thread.yield(); } } }
控制台: +------------------------------------------------------------------+
A:0 A:1 A:2 A:3 A:4 B:0 B:1 B:2 B:3 B:4
+------------------------------------------------------------------+2.4.2 代码示例:start()方法使用
package com.game.thread; /** * * @author liulongling * */ public class ThreadTest extends Thread{ public ThreadTest(String name) { super.setName(name); } @Override public void run() { for(int i = 0; i < 5;i++) { System.out.println(super.getName()+":"+i); } } public static void main(String[] args) { ThreadTest test = new ThreadTest("A"); ThreadTest test1 = new ThreadTest("B"); test.start(); test1.start(); if(Thread.activeCount()>=1) { Thread.yield(); } } }
控制台: +------------------------------------------------------------------+
B:0 A:0 B:1 A:1 B:2 A:2 B:3 A:3 B:4 A:4
+------------------------------------------------------------------+2.4.3 结果分析
以上结果可以发现run()和单线程一样每次只能执行一个线程,而start()不一样有多个线程交叉执行着。我们知道start()方法被用来启动新创建的线程,而且start()内部通过本地系统调用了run()方法,这和直接调用run()方法的效果不一样。当你调用run()方法的时候,只会是在原来的线程中调用,没有新的线程启动,start()方法会启动新的线程,其中多个线程在CPU中是支持并发执行的。那么有没有什么方法可以让A线程优先执行呢?2.5 setPriority()操作
public final void setPriority(int newPriority) { ThreadGroup g; checkAccess(); if (newPriority > MAX_PRIORITY || newPriority < MIN_PRIORITY) { throw new IllegalArgumentException(); } if((g = getThreadGroup()) != null) { if (newPriority > g.getMaxPriority()) { newPriority = g.getMaxPriority(); } setPriority0(priority = newPriority); } }
private native void setPriority0(int newPriority);setPriority使用了native关键字,在Java API中,一个native方法意味着这个方法没有使用Java语言实现,只能通过代码示例去分析它的原理。在代码中将线程A的执行优先级设置为最高,同时线程B的优先级设置为最低,那么预期的结果应该是线程A先执行完后再执行线程B,代码如下:
package com.game.thread; /** * * @author liulongling * */ public class ThreadTest extends Thread{ public ThreadTest(String name) { super.setName(name); } @Override public void run() { for(int i = 0; i < 5;i++) { System.out.println(super.getName()+":"+i); } } public static void main(String[] args) { ThreadTest test = new ThreadTest("A"); ThreadTest test1 = new ThreadTest("B"); //MAX_PRIORITY是最高优先级 test.setPriority(MAX_PRIORITY); test.setPriority(MIN_PRIORITY); test.start(); test1.start(); if(Thread.activeCount()>=1) { Thread.yield(); } } }
控制台: +------------------------------------------------------------------+ A:0 A:1 A:2 A:3 A:4 B:0 B:1 B:2 B:3 B:4 +------------------------------------------------------------------+
2.5 sleep(long millis)操作
public static native void sleep(long millis) throws InterruptedException;
sleep也是使用了native关键字,调用了底层方法。sleep是指线程被调用时,占着CPU不工作,形象地说明为“占着CPU睡觉”,此时,系统的CPU部分资源被占用,其他线程无法进入。多线程下使用时需要注意的是sleep方法不会释放锁。比如:线程A和线程B执行一段加锁代码,线程A先进去,线程B在外面等待,其中代码程序有sleep方法让线程休眠,休眠后锁并不会被释放,线程B也只能继续在外面等待直到休眠时间结束。代码如下:
package com.game.thread; import java.io.IOException; /** * * @author liulongling * */ public class ThreadTest{ private int i = 10; private Object object = new Object(); MyThread thread1 = new MyThread("A"); MyThread thread2 = new MyThread("B"); public static void main(String[] args) throws IOException { ThreadTest test = new ThreadTest(); test.thread1.start(); test.thread2.start(); } class MyThread extends Thread{ public MyThread(String name) { super.setName(name); } @Override public void run() { synchronized (object) { System.out.println(Thread.currentThread().getName()+":"+i++); try { System.out.println("线程"+Thread.currentThread().getName()+"进入睡眠状态"); Thread.currentThread().sleep(1000); } catch (InterruptedException e) { // TODO: handle exception } System.out.println("线程"+Thread.currentThread().getName()+"被唤醒"); System.out.println(Thread.currentThread().getName()+":"+i); } } } }
控制台: +------------------------------------------------------------------+
A:10
线程A进入睡眠状态
线程A被唤醒
A:11
B:11
线程B进入睡眠状态
线程B被唤醒
B:12
+------------------------------------------------------------------+2.6 yield()操作
调用yield方法会让当前线程交出CPU权限,让CPU去执行其他的线程。它跟sleep方法类似,同样不会释放锁。但是yield不能控制具体的交出CPU的时间,另外,yield方法只能让拥有相同优先级的线程有获取CPU执行时间的机会。注意,调用yield方法并不会让线程进入阻塞状态,而是让线程重回就绪状态,它只需要等待重新获取CPU执行时间,这一点是和sleep方法不一样的。
2.7 isAlive()
/** * Tests if this thread is alive. A thread is alive if it has * been started and has not yet died. * * @return <code>true</code> if this thread is alive; * <code>false</code> otherwise. */ public final native boolean isAlive();表示线程当前是否为可用状态,如果线程已经启动,并且当前没有任何异常的话,则返回true,否则为false
2.8 join()操作
join有3个重载方法:2.8.1 join()
//立即阻塞调用线程,直到该线程执行结束 public final synchronized void join(long millis) throws InterruptedException { long base = System.currentTimeMillis(); long now = 0; if (millis < 0) { throw new IllegalArgumentException("timeout value is negative"); } if (millis == 0) { //线程状态正常 while (isAlive()) { wait(0); } } else { while (isAlive()) { long delay = millis - now; if (delay <= 0) { break; } wait(delay); now = System.currentTimeMillis() - base; } } }
package com.game.thread; import java.io.IOException; /** * * @author liulongling * */ public class ThreadTest{ private int i = 10; private Object object = new Object(); MyThread thread1 = new MyThread("A"); MyThread thread2 = new MyThread("B"); public static void main(String[] args) throws IOException { ThreadTest test = new ThreadTest(); test.thread1.start(); System.out.println("线程"+Thread.currentThread().getName()+"等待"); try { test.thread1.join(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println("线程"+Thread.currentThread().getName()+"执行"); for (int j = 0; j < 5; j++) { System.out.println(Thread.currentThread().getName() + ":" + j); } } class MyThread extends Thread{ public MyThread(String name) { super.setName(name); } @Override public void run() { synchronized (object) { System.out.println(Thread.currentThread().getName()+":"+i++); try { System.out.println("线程"+Thread.currentThread().getName()+"进入睡眠状态"); Thread.currentThread().sleep(1000); } catch (InterruptedException e) { // TODO: handle exception } System.out.println("线程"+Thread.currentThread().getName()+"被唤醒"); System.out.println(Thread.currentThread().getName()+":"+i); } } } }
控制台: +------------------------------------------------------------------+
线程main等待
A:10
线程A进入睡眠状态
线程A被唤醒
A:11
线程main执行
main:0
main:1
main:2
main:3
main:4
MSDN上解释join无参方法其作用为:阻塞 “调用线程” 直到某个线程结束。从上面结果可以分析出,A线程其实在main线程上运行,我们可以说main线程调用了A线程或称main线程为“调用线程”,A线程调用join()方法后将调用线程阻塞直到A线程结束后控制台才输出来main:0...。我们去掉join方法看下控制台输出结果。控制台: +------------------------------------------------------------------+
main:0
main:1
A:10
main:2
线程A进入睡眠状态
main:3
main:4
线程A被唤醒
A:11
+------------------------------------------------------------------+2.8.2 join(long millis)
join(long millis)的参数作用是指定“调用线程”的最大阻塞时间。代码如下:
package com.game.thread; import java.io.IOException; /** * * @author liulongling * */ public class ThreadTest{ private int i = 10; private Object object = new Object(); MyThread thread1 = new MyThread("A"); MyThread thread2 = new MyThread("B"); public static void main(String[] args) throws IOException { ThreadTest test = new ThreadTest(); test.thread1.start(); System.out.println("线程"+Thread.currentThread().getName()+"等待"); try { test.thread1.join(500); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println("线程"+Thread.currentThread().getName()+"执行"); for (int j = 0; j < 5; j++) { System.out.println(Thread.currentThread().getName() + ":" + j); } } class MyThread extends Thread{ public MyThread(String name) { super.setName(name); } @Override public void run() { synchronized (object) { System.out.println(Thread.currentThread().getName()+":"+i++); try { System.out.println("线程"+Thread.currentThread().getName()+"进入睡眠状态"); Thread.currentThread().sleep(1000); } catch (InterruptedException e) { // TODO: handle exception } System.out.println("线程"+Thread.currentThread().getName()+"被唤醒"); System.out.println(Thread.currentThread().getName()+":"+i); } } } }
线程main等待
A:10
线程A进入睡眠状态
线程main执行
main:0
main:1
main:2
main:3
main:4
线程A被唤醒
A:11
+------------------------------------------------------------------+ 从上面结果可以分析出,在A线程还未结束,主线程已经开始执行。原因是我们给主线程设置的阻塞时间是500ms,小于A线程run()方法里的1000ms休眠时间。2.8.3 join(long millis, int nanos)
阻塞调用线程的时间最长为 millis 毫秒 + nanos 纳秒...这里就不举例说明了,原理和上一个方法一样。2.9 interrupt()操作
interrupt的作用是中断正被阻塞的线程,比如我给某一线程休眠了10s时间,如果我在这个线程上调用了interrupt方法,看看会有什么效果。代码如下:
package com.game.thread; import java.io.IOException; /** * * @author liulongling * */ public class ThreadTest{ private int i = 10; private Object object = new Object(); MyThread thread1 = new MyThread("A"); MyThread thread2 = new MyThread("B"); public static void main(String[] args) throws IOException { ThreadTest test = new ThreadTest(); test.thread1.start(); test.thread1.interrupt(); } class MyThread extends Thread{ public MyThread(String name) { super.setName(name); } @Override public void run() { synchronized (object) { System.out.println(Thread.currentThread().getName()+":"+i++); try { System.out.println("线程"+Thread.currentThread().getName()+"进入睡眠状态"); Thread.currentThread().sleep(10000); } catch (InterruptedException e) { System.out.println("你被中断了"); } System.out.println("线程"+Thread.currentThread().getName()+"被唤醒"); System.out.println(Thread.currentThread().getName()+":"+i); } } } }
控制台: +------------------------------------------------------------------+
A:10
线程A进入睡眠状态
你被中断了
线程A被唤醒
A:11 +------------------------------------------------------------------+
使用了 interrupt的结果是在休眠代码处抛出一个异常,并且阻塞马上停止了。
3.0 setDaemon()操作
用来设置线程是否成为守护线程和判断线程是否是守护线程。守护线程和用户线程的区别在于:守护线程依赖于创建它的线程,而用户线程则不依赖。举个简单的例子:如果在main线程中创建了一个守护线程,当main方法运行完毕之后,守护线程也会随着消亡。而用户线程则不会,用户线程会一直运行直到其运行完毕。在JVM中,像垃圾收集器线程就是守护线程。Thread类有一个比较常用的静态方法currentThread()用来获取当前线程。
参考资料
http://www.cnblogs.com/dolphin0520/p/3920357.html