Mahout实战---编写自己的相似度计算方法

时间:2024-10-06 15:08:14

Mahout本身提供了很多的相似度计算方法,如PCC,COS等。但是当需要验证自己想出来的相似度计算公式是否是好的,这时候需要自己实现相似度类。研究了Mahout-core-0.9.jar的源码后,自己实现了一篇论文上面的相似度公式。:

论文题目:An effective collaborative filtering algorithm based on user preference clustering

具体公式如下:

Mahout实战---编写自己的相似度计算方法

实现过程:具体实现参考了LogLikeHoodSimilarity类的实现

1,实现org.apache.mahout.cf.taste.similarity.UserSimilarity接口

该接口有三个方法:

public interface UserSimilarity extends Refreshable {
double userSimilarity(long userID1, long userID2) throws TasteException;
void setPreferenceInferrer(PreferenceInferrer inferrer);
void refresh(Collection<Refreshable> alreadyRefreshed);//是Refreshable的方法
}

2,void refresh(Collection<Refreshable> alreadyRefreshed);

该方法用于刷新组件(Mahout对于数据改变的时候做出的应对方法。《Mahout实战》中3.2.3节可刷新组件中提到);具体实现如下:

public void refresh(Collection<Refreshable> alreadyRefreshed) {
// TODO Auto-generated method stub
alreadyRefreshed = RefreshHelper.buildRefreshed(alreadyRefreshed);
RefreshHelper.maybeRefresh(alreadyRefreshed, getDataModel());
}

3,void setPreferenceInferrer(PreferenceInferrer inferrer);

这个方法我没有实现,它的作用:可以通过PreferenceInferrer 得到对未打分项的预测评分。

4,double userSimilarity(long userID1, long userID2) throws TasteException;

该方法需要根据公式实现:计算user1和user2的相似度。

在这之前需要传递一个DataModel进来(定义成类的成员变量,由构造函数传递进来)。

具体实现如下:

/**
* 实现该方法即实现了相似度计算方法
*/
public double userSimilarity(long userID1, long userID2) throws TasteException {
// TODO Auto-generated method stub
DataModel dataModel = getDataModel();
//获取用户打分项的id集合
FastIDSet prefs1 = dataModel.getItemIDsFromUser(userID1);
FastIDSet prefs2 = dataModel.getItemIDsFromUser(userID2); long prefs1Size = prefs1.size();
long prefs2Size = prefs2.size(); /*
* long intersectionSize = prefs1Size < prefs2Size ?
* prefs2.intersectionSize(prefs1) : prefs1.intersectionSize(prefs2);
*/
// 计算交集的大小和产生新的FastIDSet作为交集
FastIDSet pre_a, pre_b;// a为大的集合
FastIDSet pre_com = new FastIDSet();
if (prefs1Size < prefs2Size) {
pre_a = prefs2;
pre_b = prefs1;
} else {
pre_a = prefs1;
pre_b = prefs2;
}
int intersectionSize = 0;
Iterator<Long> iterator = pre_b.iterator();
while (iterator.hasNext()) {
long type = (long) iterator.next();
if (pre_a.contains(type)) { pre_com.add(type);
}
}
intersectionSize = pre_com.size();
// 如果交集为0,则相似度为0
if (intersectionSize == 0) {
return 0;
}
// 计算并集的大小
long unionSize = unionSize(pre_a, pre_b); // 计算userID1的平均打分
float avg_1 = avgPreferences(userID1, prefs1);
// 计算userID2的平均打分
float avg_2 = avgPreferences(userID2, prefs2); // 计算共同打分项的打分差的和
double sum = 0.0;
iterator = pre_com.iterator();
while (iterator.hasNext()) {
long itemID = iterator.next();
sum += Math
.abs(dataModel.getPreferenceValue(userID1, itemID) - dataModel.getPreferenceValue(userID2, itemID));
}
return Math.exp(-((sum * 1.0) / intersectionSize) * Math.abs(avg_1 - avg_2))
* ((intersectionSize * 1.0) / unionSize);
}
/**
* FastIDSet只实现了intersectionSize(求交集), 现实现求并
*/
private int unionSize(FastIDSet a, FastIDSet b) {
int count = a.size();
Iterator<Long> iterator = b.iterator();
while (iterator.hasNext()) {
long type = (long) iterator.next();
if (!a.contains(type)) {
count++;
}
}
return count;
} /**
* 计算用户的打分平均值
*
* @throws TasteException
*/
private float avgPreferences(long userID, FastIDSet set) throws TasteException {
float score = (float) 0.0;
Iterator<Long> iterator = set.iterator();
while (iterator.hasNext()) {
long type = (long) iterator.next();
score += dataModel.getPreferenceValue(userID, type);
}
return score / set.size();
}

5,测试实现的正确性

根据论文的测试数据对实现的正确性进行测试

Mahout实战---编写自己的相似度计算方法

生成ups.csv

1,101,1.0
1,102,2.0
1,104,3.0
1,105,2.0
1,107,2.0 2,101,2.0
2,102,4.0
2,103,4.0
2,105,4.0
2,108,2.0
2,109,3.0 3,101,5.0
3,102,5.0
3,104,4.0
3,106,4.0
3,107,3.0
3,109,4.0 4,101,5.0
4,103,5.0
4,104,4.0
4,105,4.0
4,107,4.0
4,108,4.0 5,101,1.0
5,105,2.0
5,109,2.0

测试程序如下:

public class UPSTest {
public static void main(String[] args) throws IOException, TasteException {
String projectDir = System.getProperty("user.dir");
DataModel model = new FileDataModel(new File(projectDir + "/src/main/ups.csv"));
UserSimilarity similarity = new UPSSimiliarity(model);
DecimalFormat df = new DecimalFormat("#,##0.0000");// 保留4位小数
System.out.println(df.format(similarity.userSimilarity(1, 2)));
System.out.println(df.format(similarity.userSimilarity(1, 3)));
System.out.println(df.format(similarity.userSimilarity(1, 4)));
System.out.println(df.format(similarity.userSimilarity(1, 5)));
System.out.println(df.format(similarity.userSimilarity(2, 3)));
System.out.println(df.format(similarity.userSimilarity(2, 4)));
System.out.println(df.format(similarity.userSimilarity(2, 5)));
System.out.println(df.format(similarity.userSimilarity(3, 4)));
System.out.println(df.format(similarity.userSimilarity(3, 5)));
System.out.println(df.format(similarity.userSimilarity(4, 5)));
}
}

运行结果如下:

Mahout实战---编写自己的相似度计算方法

与论文中的结果基本相同:

Mahout实战---编写自己的相似度计算方法

参考 论文:[1] Zhang, Jia, et al. "An effective collaborative filtering algorithm based on user preference clustering." Applied Intelligence (2016): 1-11.

      [2] Mahout实战