又是去理解了一次01背包。
这道题目的意思就是给你一个N (N < 40)表示有一个集合{1,2,3,... n}
你要将它划分成相等的两个子集合,求有几种划分方式
如果N是奇数,那么显然不能由相同的两个Sub Sum组成,所以要输出“0”
现在我们定义一个数组Dp[i][j] 表示前i个数组合起来的和是j的种数
接下来就和01背包很像了
得到状态转移方程Dp[i][j] = Dp[i - 1][j] + Dp[i - 1][j - i]
分表代表当前的i 取 和 不取
在每一层 j 的转移下要倒着来,从(1 + n) * n / 2 / 2开始推到1 (如果是从左到右则会重复计算)
在输出的时候要把答案除以2因为For every Sub sum there're 2 Sub sets
至此题目已解决。
Source code:
/*
ID: wushuai2
PROG: subset
LANG: C++
*/
//#pragma comment(linker, "/STACK:16777216") //for c++ Compiler
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cmath>
#include <stack>
#include <string>
#include <map>
#include <set>
#include <list>
#include <queue>
#include <vector>
#include <algorithm>
#define Max(a,b) (((a) > (b)) ? (a) : (b))
#define Min(a,b) (((a) < (b)) ? (a) : (b))
#define Abs(x) (((x) > 0) ? (x) : (-(x)))
#define MOD 1000000007
#define pi acos(-1.0) using namespace std; typedef long long ll ;
typedef unsigned long long ull ;
typedef unsigned int uint ;
typedef unsigned char uchar ; template<class T> inline void checkmin(T &a,T b){if(a>b) a=b;}
template<class T> inline void checkmax(T &a,T b){if(a<b) a=b;} const double eps = 1e- ;
const int M = ;
const ll P = 10000000097ll ;
const int INF = 0x3f3f3f3f ;
const int MAX_N = ;
const int MAXSIZE = ; ll f[]; int main() {
ofstream fout ("subset.out");
ifstream fin ("subset.in");
int i, j, k, t, n, s, c, w, q;
fin >> n;
int MAX = (n + ) * n / ;
if(MAX & ){
fout << "" << endl;
return ;
}
MAX /= ;
f[] = ;
for(i = ; i <= n; ++i){
for(j = MAX; j >= i; --j){
f[j] += f[j - i]; //Choose and don't choose
}
}
fout << f[MAX] / << endl;// fin.close();
fout.close();
return ;
}