poj 3735 大数量反复操作问题(矩阵高速幂)

时间:2024-10-03 18:05:38

题意:一个一维数组,3种操作: a:  第i个数+1,b: 第i个数=0 ,c::交换某俩处的数。  由三种基本操作构成一组序列,反复该序列m次(m<10^9),问结果

属于一种综合操作反复型: 每次乘以一矩阵T,相当于做一次操作。关键是构造这个矩阵。

先构造最初矩阵A :  1*(n +1) ={1,0,0,0...} ,  第一个一时为了操作第一行数的,

T的构造:初始是N+1 * N+1单位阵 这样恰好操作第i个数, +1,就在第0行的第 i个加1;交换就相应列交换,清零就相应列清0.

ans= A*(T^m); 注意用;long long

#include<iostream>
#include<cstring>
using namespace std;
struct juz
{
long long bat[105][105];
int x,y; //行 列
juz ()
{
memset(bat,0,sizeof(bat));
x=0;y=0;
}
};
juz mutp(juz a,juz b)
{
juz c;
c.x=a.x;c.y=b.y;
memset(c.bat,0,sizeof(c.bat));
for(int k=0;k<a.y;k++)
for(int i=0;i<a.x;i++)
if(a.bat[i][k])
{
for(int j=0;j<b.y;j++)
{
c.bat[i][j]+=(a.bat[i][k]*b.bat[k][j]);
}
}
return c;
}
juz quickf(juz a,int k)
{
juz c=a;
for(int i=0;i<a.x;i++)
for(int j=0;j<a.x;j++)
c.bat[i][j]=(i==j);
while(k>=1)
{
if(k%2)
c=mutp(c,a);
k=k/2; a=mutp(a,a);
}
return c;
}
int main()
{
int n,m,k;
while(cin>>n>>m>>k&&(n||m||k))
{
juz a,b,c;
a.x=1;a.y=n+1; b.x=n+1;b.y=n+1;
for(int i=0;i<=n;i++)
{
a.bat[0][i]=0;
b.bat[i][i]=1;
}
a.bat[0][0]=1;
char tmp;
int xx,yy;
for(int i=0;i<k;i++)
{
cin>>tmp;
if(tmp=='g')
{
cin>>xx;
b.bat[0][xx]++;
}
else if(tmp=='e')
{
cin>>xx;
for(int i=0;i<=n;i++)
b.bat[i][xx]=0;
}
else
{
cin>>xx>>yy;
for(int i=0;i<=n;i++)
{
int tx=b.bat[i][xx];
b.bat[i][xx]=b.bat[i][yy];
b.bat[i][yy]=tx;
}
}
}
c=quickf(b,m);
c=mutp(a,c);
for(int i=1;i<=n;i++)
if(i!=n)cout<<c.bat[0][i]<<" ";
else cout<<c.bat[0][i]<<endl;
}
return 0;
}