Java实现二叉树三种遍历算法

时间:2022-11-30 17:32:35

</pre><p></p><p>参考网上一些资料测试整理了一下二叉树遍历的Java实现代码。</p>二叉树三种遍历方式:先序遍历、中序遍历、后序遍历。<p>首先定义二叉树类:</p><p></p><pre code_snippet_id="422510" snippet_file_name="blog_20140708_2_1633299" name="code" class="java">package mm.test.tree;

public class BinaryTree {

char data;//根节点
BinaryTree leftChild;//左孩子
BinaryTree rightChild;//右孩子

public BinaryTree() {

}

public void visit() {
System.out.println(this.data);
}

public BinaryTree(char data) {
this.data = data;
this.leftChild = null;
this.rightChild = null;
}

public BinaryTree getLeftChild() {
return leftChild;
}

public void setLeftChild(BinaryTree leftChild) {
this.leftChild = leftChild;
}

public BinaryTree getRightChild() {
return rightChild;
}

public void setRightChild(BinaryTree rightChild) {
this.rightChild = rightChild;
}

public char getData() {
return data;
}

public void setData(char data) {
this.data = data;
}

}

先序遍历思想:根左右。首先遍历根节点,然后遍历左子树和右子树。

package mm.test.tree;

import java.util.Stack;

public class VisitBinaryTree {

//先序遍历非递归算法
private void preOrder(BinaryTree root) {

if(root!=null) {

Stack<BinaryTree> stack = new Stack<BinaryTree>();

for (BinaryTree node = root; !stack.empty() || node != null;) {

//当遍历至节点位空的时候出栈
if(node == null) {
node = stack.pop();
}

node.visit();

//遍历右孩子存入栈内
if(node.getRightChild()!=null) {
stack.push(node.getRightChild());
}

//遍历左子树节点
node = node.getLeftChild();

}

}

}

//先序遍历递归算法
public void preOrderRecursion(BinaryTree root) {
if(root!=null) {
root.visit();
preOrderRecursion(root.getLeftChild());
preOrderRecursion(root.getRightChild());
}
}
}

测试代码:

public static void main(String args[]) {

 BinaryTree node = new BinaryTree('A');  
       <span style="white-space:pre"></span> BinaryTree root = node;  
        <span style="white-space:pre"></span> BinaryTree nodeL1;
       <span style="white-space:pre"></span> BinaryTree nodeL;
       <span style="white-space:pre"></span> BinaryTree nodeR;
       <span style="white-space:pre"></span> node.setLeftChild(new BinaryTree('B'));  
       <span style="white-space:pre"></span> node.setRightChild(new BinaryTree('C'));  
          
       <span style="white-space:pre"></span> nodeL1 = node.getLeftChild();  
      <span style="white-space:pre"></span> nodeL1.setLeftChild(new BinaryTree('D'));  
       <span style="white-space:pre"></span> nodeL1.setRightChild(new BinaryTree('E')); 
        
       <span style="white-space:pre"></span> nodeL = nodeL1.getLeftChild();  
       <span style="white-space:pre"></span> nodeL.setLeftChild(new BinaryTree('F'));
        
       <span style="white-space:pre"></span> node = node.getRightChild();  
        <span style="white-space:pre"></span> node.setLeftChild(new BinaryTree('G'));  
        <span style="white-space:pre"></span> node.setRightChild(new BinaryTree('H'));  
        
        <span style="white-space:pre"></span> nodeR = node.getLeftChild();  
        <span style="white-space:pre"></span> nodeR.setLeftChild(new BinaryTree('I'));  
        <span style="white-space:pre"></span> nodeR.setRightChild(new BinaryTree('J')); 
        
        <span style="white-space:pre"></span> VisitBinaryTree vt= new VisitBinaryTree();  

//先序遍历递归和非递归测试
vt.preOrder(root);
vt.preOrderRecursion(root);

}

中序遍历算法:
//中序遍历的非递归算法
public void inOrder(BinaryTree root) {

if(root!=null) {

Stack<BinaryTree> stack = new Stack<BinaryTree>();

for (BinaryTree node = root; !stack.empty() || node != null; ) {

//寻找最左的左子树节点,并将遍历的左节点进栈
while(node!=null) {
stack.push(node);
node = node.getLeftChild();
}

if(!stack.empty()) {
node = stack.pop(); //出栈
node.visit(); //读取节点值
node = node.getRightChild();
}
}
}
}

//中序遍历的递归算法
public void inOrderRecursion (BinaryTree root) {

if(root!=null) {
inOrderRecursion(root.getLeftChild());
root.visit();
inOrderRecursion(root.getRightChild());
}

}
测试代码:
public static void main(String args[]) {BinaryTree node = new BinaryTree('A');          BinaryTree root = node;          BinaryTree nodeL1;        BinaryTree nodeL;        BinaryTree nodeR;        node.setLeftChild(new BinaryTree('B'));          node.setRightChild(new BinaryTree('C'));                    nodeL1 = node.getLeftChild();          nodeL1.setLeftChild(new BinaryTree('D'));          nodeL1.setRightChild(new BinaryTree('E'));                 nodeL = nodeL1.getLeftChild();          nodeL.setLeftChild(new BinaryTree('F'));                node = node.getRightChild();          node.setLeftChild(new BinaryTree('G'));          node.setRightChild(new BinaryTree('H'));                  nodeR = node.getLeftChild();          nodeR.setLeftChild(new BinaryTree('I'));          nodeR.setRightChild(new BinaryTree('J'));                 VisitBinaryTree vt= new VisitBinaryTree();  //中序遍历递归和非递归测试vt.inOrder(root);vt.inOrderRecursion(root);}
后序遍历:

//后序遍历非递归算法
private void postOrder(BinaryTree root) {
if(root!=null) {
Stack<BinaryTree> stack = new Stack<BinaryTree>();

for (BinaryTree node = root; !stack.empty() || node != null;) {
while(root!=null) {
stack.push(root);
root = root.getLeftChild();
}

while(!stack.empty() && root == stack.peek().getRightChild()) {
root = stack.pop();
root.visit();
}

if (stack.empty()) {
return;
} else {
root = stack.peek().getRightChild();
}
}
}
}

//后序遍历递归算法
private void postOrderRecursion(BinaryTree root) {
if(root!=null) {
postOrderRecursion(root.getLeftChild());
postOrderRecursion(root.getRightChild());
root.visit();
}
}

测试方法:

public static void main(String args[]) {

BinaryTree node = new BinaryTree('A');  
        BinaryTree root = node;  
        BinaryTree nodeL1;
        BinaryTree nodeL;
        BinaryTree nodeR;
        node.setLeftChild(new BinaryTree('B'));  
        node.setRightChild(new BinaryTree('C'));  
          
        nodeL1 = node.getLeftChild();  
        nodeL1.setLeftChild(new BinaryTree('D'));  
        nodeL1.setRightChild(new BinaryTree('E')); 
        
        nodeL = nodeL1.getLeftChild();  
        nodeL.setLeftChild(new BinaryTree('F'));
        
        node = node.getRightChild();  
        node.setLeftChild(new BinaryTree('G'));  
        node.setRightChild(new BinaryTree('H'));  
        
        nodeR = node.getLeftChild();  
        nodeR.setLeftChild(new BinaryTree('I'));  
        nodeR.setRightChild(new BinaryTree('J')); 
        
        VisitBinaryTree vt= new VisitBinaryTree();  

//后序遍历递归和非递归测试
vt.postOrder(root);
vt.postOrderRecursion(root);

}