题意 : 如果两个线段相交就属于同一集合,查询某条线段所属集合有多少线段,输出。
思路 : 先判断与其他线段是否相交,然后合并。
//
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#define eps 1e-8
#define zero(x) (((x) > 0 ? (x) : (-x)) < eps) using namespace std ; struct point
{
double x,y ;
} p[];
struct Line
{
point a;
point b ;
// int num ;
} L[] ;
int father[],numb[],rankk[] ;
int cnt ;
double direction(point p0,point p1,point p2)
{
return (p2.x-p0.x)*(p1.y-p0.y)-(p1.x-p0.x)*(p2.y-p0.y);
} bool on_segment(point p0,point p1,point p2)
{
if((min(p0.x,p1.x)<=p2.x && p2.x<=max(p0.x,p1.x)) && (min(p0.y,p1.y)<=p2.y && p2.y<=max(p0.y,p1.y)))
return true;
return false;
} bool Segment_intersect(point p1,point p2,point p3,point p4)
{
double d1,d2,d3,d4;
d1 = direction(p3,p4,p1);
d2 = direction(p3,p4,p2);
d3 = direction(p1,p2,p3);
d4 = direction(p1,p2,p4);
if(((d1> && d2<)||(d1< && d2>)) && ((d3> && d4<)||(d3<&&d4>)))
return true;
else if((d1== && on_segment(p3,p4,p1)) || (d2== && on_segment(p3,p4,p2)) || (d3== && on_segment(p1,p2,p3)) || (d4== && on_segment(p1,p2,p4)))
return true;
return false;
}
int find_(int x)
{
if(father[x] != x)
father[x] = find_(father[x]) ;
return father[x] ;
} void mergee(int a, int b){
int fx = find_(a);
int fy = find_(b); if (fx != fy){
father[fy] = fx;
numb[fx] += numb[fy];
}
}
void Init()
{
cnt = ;
for(int i=; i<=; i++)
{
numb[i]=;
}
for(int i = ; i < ; i++)
father[i] = i ;
memset(rankk,,sizeof(rankk)) ;
}
int main()
{
int T ,n,ss;
scanf("%d",&T) ;
char s[] ;
while( T--)
{
scanf("%d",&n) ;
Init() ;
for(int i = ; i < n ; i++)
{
scanf("%s",s) ;
if(s[] == 'P')
{
cnt ++ ;
scanf("%lf %lf %lf %lf",&L[cnt].a.x,&L[cnt].a.y,&L[cnt].b.x,&L[cnt].b.y) ;
for(int j = ; j < cnt ; j ++)
if(find_(j) != find_(cnt) && Segment_intersect(L[j].a,L[j].b,L[cnt].a,L[cnt].b))
mergee(j,cnt) ;
}
else
{
scanf("%d",&ss) ;
printf("%d\n",numb[find_(ss)]) ;
}
}
if(T) printf("\n") ;
}
return ;
}
线段非规范相交1
double cross(point p0,point p1,point p2)
{
return (p2.x-p0.x)*(p1.y-p0.y)-(p1.x-p0.x)*(p2.y-p0.y);
} bool on_segment(point p0,point p1,point p2)
{
if((min(p0.x,p1.x)<=p2.x && p2.x<=max(p0.x,p1.x)) && (min(p0.y,p1.y)<=p2.y && p2.y<=max(p0.y,p1.y)))
return true;
return false;
} bool Segment_intersect(point p1,point p2,point p3,point p4)
{
double d1,d2,d3,d4;
d1 = cross(p3,p4,p1);
d2 = cross(p3,p4,p2);
d3 = cross(p1,p2,p3);
d4 = cross(p1,p2,p4);
if(((d1> && d2<)||(d1< && d2>)) && ((d3> && d4<)||(d3<&&d4>)))
return true;
else if((d1== && on_segment(p3,p4,p1)) || (d2== && on_segment(p3,p4,p2)) || (d3== && on_segment(p1,p2,p3)) || (d4== && on_segment(p1,p2,p4)))
return true;
return false;
}
线段非规范相交2
double cross(point a, point b, point c)
{
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
} //aa, bb为一条线段两端点 cc, dd为另一条线段的两端点 相交返回true, 不相交返回false
bool intersect(point aa, point bb, point cc, point dd)
{
if ( max(aa.x, bb.x)<min(cc.x, dd.x) )
{
return false;
}
if ( max(aa.y, bb.y)<min(cc.y, dd.y) )
{
return false;
}
if ( max(cc.x, dd.x)<min(aa.x, bb.x) )
{
return false;
}
if ( max(cc.y, dd.y)<min(aa.y, bb.y) )
{
return false;
}
if ( cross(cc, bb, aa)*cross(bb, dd, aa)< )
{
return false;
}
if ( cross(aa, dd, cc)*cross(dd, bb, cc)< )
{
return false;
}
return true;
}