HDU #2966 In case of failure

时间:2023-03-08 16:36:59

Overview

给出平面上两两不重合的$n$个整点, 求每个点到它在其他$n-1$个点的最近临点的欧几里得距离的平方.

Solution

k-d tree 模板题.

关于k-d tree, 见这篇博客.

Implementation

#include <bits/stdc++.h>
#define lson id<<1
#define rson id<<1|1
#define sqr(x) (x)*(x)
using namespace std;
using LL=long long;
const int N=1e5+5; // K-D tree: a special case of binary space partitioning trees
int DIM=2, idx; struct Node{
LL key[2];
bool operator<(const Node &rhs)const{
return key[idx]<rhs.key[idx];
}
void read(){
for(int i=0; i<DIM; i++)
scanf("%lld", key+i);
}
LL dis2(const Node &rhs)const{
LL res=0;
for(int i=0; i<DIM; i++)
res+=sqr(key[i]-rhs.key[i]);
return res;
}
}p[N], _p[N]; Node a[N<<2]; // K-D tree
bool f[N<<2]; // [l, r)
void build(int id, int l, int r, int dep){
if(l==r) return; // error-prone
f[id]=true, f[lson]=f[rson]=false;
// select axis based on depth so that axis cycles through all valid values
idx=dep%DIM;
int mid=l+r>>1;
// sort point list and choose median as pivot element
nth_element(p+l, p+mid, p+r);
a[id]=p[mid];
build(lson, l, mid, dep+1);
build(rson, mid+1, r, dep+1);
} LL mi; void query(const Node &p, int id, int dep){
int dim=dep%DIM;
int x=lson, y=rson;
// left: <, right >=
if(p.key[dim]>=a[id].key[dim])
swap(x, y); if(f[x]) query(p, x, dep+1);
LL cur=p.dis2(a[id]);
if(cur && cur<mi) mi=cur; if(f[y] && sqr(a[id].key[dim]-p.key[dim])<mi)
query(p, y, dep+1);
} int main(){
int T;
scanf("%d", &T);
for(int n; T--; ){
scanf("%d", &n);
for(int i=0; i<n; i++){
p[i].read();
_p[i]=p[i]; //error-prone
}
build(1, 0, n, 0);
for(int i=0; i<n; i++){
mi=LLONG_MAX;
query(_p[i], 1, 0); //error-prone
printf("%lld\n", mi);
}
}
return 0;
}