POJ 1236 Network of Schools(强连通 Tarjan+缩点)
ACM
题目地址:POJ 1236
题意:
给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得有向图成为一个强连通图。
分析:
跟HDU 2767 Proving Equivalences(题解)一样的题目,只是多了个问题,事实上转化成DAG后就不难考虑了,事实上仅仅要选择入度为0的点即可了。
代码:
/*
* Author: illuz <iilluzen[at]gmail.com>
* File: 1236.cpp
* Create Date: 2014-07-30 15:13:12
* Descripton: Tarjan
*/ #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#include <vector>
#include <stack>
#define repf(i,a,b) for(int i=(a);i<=(b);i++)
typedef long long ll; const int N = 105; vector<int> G[N];
stack<int> S;
int low[N], dfn[N], sccno[N], tclock, scccnt;
int id[N], od[N];
int n, rd; void tarjan(int u) {
low[u] = dfn[u] = ++tclock;
S.push(u); int sz = G[u].size();
repf (i, 0, sz - 1) {
int v = G[u][i];
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (!sccno[v]) {
low[u] = min(low[u], dfn[v]);
}
} if (low[u] == dfn[u]) {
scccnt++;
int v = -1;
while (v != u) {
v = S.top();
S.pop();
sccno[v] = scccnt;
}
}
} void read() {
repf (i, 1, n) {
G[i].clear();
while (scanf("%d", &rd) && rd) {
G[i].push_back(rd);
}
}
} void find_scc() {
tclock = scccnt = 0;
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(sccno, 0, sizeof(sccno)); repf (i, 1, n) {
if (!dfn[i]) {
tarjan(i);
}
}
} void solve() {
if (scccnt == 1) {
printf("1\n0\n");
return;
} memset(id, 0, sizeof(id));
memset(od, 0, sizeof(od)); repf (u, 1, n) {
int sz = G[u].size();
repf (i, 0, sz - 1) {
int v = G[u][i];
if (sccno[u] != sccno[v]) {
id[sccno[v]]++;
od[sccno[u]]++;
}
}
} int idnum = 0, odnum = 0;
repf (i, 1, scccnt) {
idnum += (id[i] == 0);
odnum += (od[i] == 0);
} printf("%d\n%d\n", idnum, max(idnum, odnum));
} int main() {
while (~scanf("%d", &n)) {
read();
find_scc();
solve();
}
return 0;
}