#===============================================================================
# Copyright 2014-2017 Intel Corporation
# All Rights Reserved.
#
# If this software was obtained under the Intel Simplified Software License,
# the following terms apply:
#
# The source code, information and material ("Material") contained herein is
# owned by Intel Corporation or its suppliers or licensors, and title to such
# Material remains with Intel Corporation or its suppliers or licensors. The
# Material contains proprietary information of Intel or its suppliers and
# licensors. The Material is protected by worldwide copyright laws and treaty
# provisions. No part of the Material may be used, copied, reproduced,
# modified, published, uploaded, posted, transmitted, distributed or disclosed
# in any way without Intel's prior express written permission. No license under
# any patent, copyright or other intellectual property rights in the Material
# is granted to or conferred upon you, either expressly, by implication,
# inducement, estoppel or otherwise. Any license under such intellectual
# property rights must be express and approved by Intel in writing.
#
# Unless otherwise agreed by Intel in writing, you may not remove or alter this
# notice or any other notice embedded in Materials by Intel or Intel's
# suppliers or licensors in any way.
#
#
# If this software was obtained under the Apache License, Version 2.0 (the
# "License"), the following terms apply:
#
# You may not use this file except in compliance with the License. You may
# obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# See the License for the specific language governing permissions and
# limitations under the License.
#=============================================================================== ## <a name="DAAL-EXAMPLE-PY-UTIL"></a> from __future__ import print_function import sys
import numpy as np from daal.data_management import (
CSRNumericTable, NumericTableIface, readOnly, BlockDescriptor, packed_mask,
DataSourceIface, FileDataSource, HomogenTensor, SubtensorDescriptor
) CRC_REM = [
0x00000000, 0x741B8CD6, 0xE83719AC, 0x9C2C957A, 0xA475BF8E, 0xD06E3358, 0x4C42A622, 0x38592AF4,
0x3CF0F3CA, 0x48EB7F1C, 0xD4C7EA66, 0xA0DC66B0, 0x98854C44, 0xEC9EC092, 0x70B255E8, 0x04A9D93E,
0x79E1E794, 0x0DFA6B42, 0x91D6FE38, 0xE5CD72EE, 0xDD94581A, 0xA98FD4CC, 0x35A341B6, 0x41B8CD60,
0x4511145E, 0x310A9888, 0xAD260DF2, 0xD93D8124, 0xE164ABD0, 0x957F2706, 0x0953B27C, 0x7D483EAA,
0xF3C3CF28, 0x87D843FE, 0x1BF4D684, 0x6FEF5A52, 0x57B670A6, 0x23ADFC70, 0xBF81690A, 0xCB9AE5DC,
0xCF333CE2, 0xBB28B034, 0x2704254E, 0x531FA998, 0x6B46836C, 0x1F5D0FBA, 0x83719AC0, 0xF76A1616,
0x8A2228BC, 0xFE39A46A, 0x62153110, 0x160EBDC6, 0x2E579732, 0x5A4C1BE4, 0xC6608E9E, 0xB27B0248,
0xB6D2DB76, 0xC2C957A0, 0x5EE5C2DA, 0x2AFE4E0C, 0x12A764F8, 0x66BCE82E, 0xFA907D54, 0x8E8BF182,
0x939C1286, 0xE7879E50, 0x7BAB0B2A, 0x0FB087FC, 0x37E9AD08, 0x43F221DE, 0xDFDEB4A4, 0xABC53872,
0xAF6CE14C, 0xDB776D9A, 0x475BF8E0, 0x33407436, 0x0B195EC2, 0x7F02D214, 0xE32E476E, 0x9735CBB8,
0xEA7DF512, 0x9E6679C4, 0x024AECBE, 0x76516068, 0x4E084A9C, 0x3A13C64A, 0xA63F5330, 0xD224DFE6,
0xD68D06D8, 0xA2968A0E, 0x3EBA1F74, 0x4AA193A2, 0x72F8B956, 0x06E33580, 0x9ACFA0FA, 0xEED42C2C,
0x605FDDAE, 0x14445178, 0x8868C402, 0xFC7348D4, 0xC42A6220, 0xB031EEF6, 0x2C1D7B8C, 0x5806F75A,
0x5CAF2E64, 0x28B4A2B2, 0xB49837C8, 0xC083BB1E, 0xF8DA91EA, 0x8CC11D3C, 0x10ED8846, 0x64F60490,
0x19BE3A3A, 0x6DA5B6EC, 0xF1892396, 0x8592AF40, 0xBDCB85B4, 0xC9D00962, 0x55FC9C18, 0x21E710CE,
0x254EC9F0, 0x51554526, 0xCD79D05C, 0xB9625C8A, 0x813B767E, 0xF520FAA8, 0x690C6FD2, 0x1D17E304,
0x5323A9DA, 0x2738250C, 0xBB14B076, 0xCF0F3CA0, 0xF7561654, 0x834D9A82, 0x1F610FF8, 0x6B7A832E,
0x6FD35A10, 0x1BC8D6C6, 0x87E443BC, 0xF3FFCF6A, 0xCBA6E59E, 0xBFBD6948, 0x2391FC32, 0x578A70E4,
0x2AC24E4E, 0x5ED9C298, 0xC2F557E2, 0xB6EEDB34, 0x8EB7F1C0, 0xFAAC7D16, 0x6680E86C, 0x129B64BA,
0x1632BD84, 0x62293152, 0xFE05A428, 0x8A1E28FE, 0xB247020A, 0xC65C8EDC, 0x5A701BA6, 0x2E6B9770,
0xA0E066F2, 0xD4FBEA24, 0x48D77F5E, 0x3CCCF388, 0x0495D97C, 0x708E55AA, 0xECA2C0D0, 0x98B94C06,
0x9C109538, 0xE80B19EE, 0x74278C94, 0x003C0042, 0x38652AB6, 0x4C7EA660, 0xD052331A, 0xA449BFCC,
0xD9018166, 0xAD1A0DB0, 0x313698CA, 0x452D141C, 0x7D743EE8, 0x096FB23E, 0x95432744, 0xE158AB92,
0xE5F172AC, 0x91EAFE7A, 0x0DC66B00, 0x79DDE7D6, 0x4184CD22, 0x359F41F4, 0xA9B3D48E, 0xDDA85858,
0xC0BFBB5C, 0xB4A4378A, 0x2888A2F0, 0x5C932E26, 0x64CA04D2, 0x10D18804, 0x8CFD1D7E, 0xF8E691A8,
0xFC4F4896, 0x8854C440, 0x1478513A, 0x6063DDEC, 0x583AF718, 0x2C217BCE, 0xB00DEEB4, 0xC4166262,
0xB95E5CC8, 0xCD45D01E, 0x51694564, 0x2572C9B2, 0x1D2BE346, 0x69306F90, 0xF51CFAEA, 0x8107763C,
0x85AEAF02, 0xF1B523D4, 0x6D99B6AE, 0x19823A78, 0x21DB108C, 0x55C09C5A, 0xC9EC0920, 0xBDF785F6,
0x337C7474, 0x4767F8A2, 0xDB4B6DD8, 0xAF50E10E, 0x9709CBFA, 0xE312472C, 0x7F3ED256, 0x0B255E80,
0x0F8C87BE, 0x7B970B68, 0xE7BB9E12, 0x93A012C4, 0xABF93830, 0xDFE2B4E6, 0x43CE219C, 0x37D5AD4A,
0x4A9D93E0, 0x3E861F36, 0xA2AA8A4C, 0xD6B1069A, 0xEEE82C6E, 0x9AF3A0B8, 0x06DF35C2, 0x72C4B914,
0x766D602A, 0x0276ECFC, 0x9E5A7986, 0xEA41F550, 0xD218DFA4, 0xA6035372, 0x3A2FC608, 0x4E344ADE
] def readTextFile(dataset_filename):
data_list = []
with open(dataset_filename, 'r') as f:
lines = f.readlines()
for line in lines:
data_list.append(tuple([float(x) for x in line.split(',')[:-1]]))
return np.array(data_list, dtype=np.ubyte).flatten() def createSparseTable(dataset_filename, ntype=np.float64): try:
f = open(dataset_filename, 'r')
except Exception:
sys.exit("Unable to open '{}'.".format(dataset_filename)) lines = f.readlines()
row_index_line = lines[0]
columns_line = lines[1]
values_line = lines[2] row_offsets = np.array(row_index_line.rstrip('\n,').split(','), dtype=np.uint64)
num_vectors = len(row_offsets) - 1
col_indices = np.array(columns_line.rstrip('\n,').split(','), dtype=np.uint64)
num_columns = len(col_indices)
data = np.array(values_line.rstrip('\n,').split(','), dtype=ntype)
num_nonzeros = len(data) max_col = 0 for i in range(num_columns):
if col_indices[i] > max_col:
max_col = col_indices[i]
if sys.version_info[0] < 3:
num_features = long(max_col)
else:
num_features = int(max_col) if (
num_columns != num_nonzeros or
num_nonzeros != int(row_offsets[num_vectors]) - 1 or
num_features == 0 or
num_vectors == 0
):
print("Incorrect format of file")
sys.exit() numeric_table = CSRNumericTable(data, col_indices, row_offsets, num_features, num_vectors) return numeric_table def printAprioriItemsets(large_itemsets_table, large_itemsets_support_table,
itemsets_to_print=20):
large_itemset_count = large_itemsets_support_table.getNumberOfRows()
num_items_in_large_itemsets = large_itemsets_table.getNumberOfRows() large_itemsets = large_itemsets_table.getBlockOfRowsAsDouble(0, num_items_in_large_itemsets).flatten()
large_itemsets_support_data = large_itemsets_support_table.getBlockOfRowsAsDouble(0, large_itemset_count).flatten() large_itemsets_array = [[] for x in range(large_itemset_count)] for i in range(num_items_in_large_itemsets):
large_itemsets_array[int(large_itemsets[2 * i])].append(large_itemsets[2 * i + 1]) support_array = [0] * large_itemset_count for i in range(large_itemset_count):
support_array[int(large_itemsets_support_data[2 * i])] = large_itemsets_support_data[2 * i + 1] print("\nApriori example program results\n")
print("Last " + str(itemsets_to_print) + " large itemsets: \n")
print("Itemset\t\t\tSupport") if large_itemset_count > itemsets_to_print and itemsets_to_print != 0:
i_min = large_itemset_count - itemsets_to_print
else:
i_min = 0 for i in range(i_min, large_itemset_count):
print("{", end='')
for l in range(len(large_itemsets_array[i]) - 1):
print("{:.0f}".format(large_itemsets_array[i][l]), end=', ')
print("{:.0f}}}\t\t".format(large_itemsets_array[i][len(large_itemsets_array[i]) - 1]), end='') print("{:.0f}".format(support_array[i])) def printAprioriRules(left_items_table, right_items_table, confidence_table,
num_rules_to_print=20): num_rules = confidence_table.getNumberOfRows()
num_left_items = left_items_table.getNumberOfRows()
num_right_items = right_items_table.getNumberOfRows() left_items = left_items_table.getBlockOfRowsAsDouble(0, num_left_items).flatten()
right_items = right_items_table.getBlockOfRowsAsDouble(0, num_right_items).flatten()
confidence = confidence_table.getBlockOfRowsAsDouble(0, num_rules).flatten() left_items_array = [[] for x in range(num_rules)] if num_rules == 0:
print("\nNo association rules were found ")
return for i in range(num_left_items):
left_items_array[int(left_items[2 * i])].append(left_items[2 * i + 1]) right_items_array = [[] for x in range(num_right_items)] for i in range(num_right_items):
right_items_array[int(right_items[2 * i])].append(right_items[2 * i + 1]) confidence_array = [0] * num_rules for i in range(num_rules):
confidence_array[i] = confidence[i] print("\nLast {} association rules: \n".format(num_rules_to_print))
print("Rule\t\t\t\tConfidence")
if num_rules > num_rules_to_print and num_rules_to_print != 0:
i_min = num_rules - num_rules_to_print
else:
i_min = 0 for i in range(i_min, num_rules):
print("{", end='')
for l in range(len(left_items_array[i]) - 1):
print("{:.0f}, ".format(left_items_array[i][l]), end='')
print("{:.0f}}} => {{".format(left_items_array[i][len(left_items_array[i]) - 1]), end='') for l in range(len(right_items_array[i]) - 1):
print("{:.0f}, ".format(right_items_array[i][l]), end='')
print("{:.0f}}}\t\t".format(right_items_array[i][len(right_items_array[i]) - 1]), end='') print("{0:.6g}".format(confidence_array[i])) def isFull(layout):
layout_int = int(layout)
if packed_mask & layout_int:
return False
return True def printArray(array, num_printed_cols, num_printed_rows, num_cols, message,
interval=10, flt64=True):
print(message)
flat_array = array.flatten()
decimals = '3' if flt64 else '0'
for i in range(num_printed_rows):
for j in range(num_printed_cols):
print("{:<{width}.{dec}f}".format(
flat_array[i * num_cols + j], width=interval, dec=decimals), end=''
)
print()
print() def isUpper(layout):
if (
layout == NumericTableIface.upperPackedSymmetricMatrix or
layout == NumericTableIface.upperPackedTriangularMatrix
):
return True
return False def isLower(layout):
if (
layout == NumericTableIface.lowerPackedSymmetricMatrix or
layout == NumericTableIface.lowerPackedTriangularMatrix
):
return True
return False def printLowerArray(array, num_printed_rows, message, interval=10):
cols = 1
print(message)
for i in range(num_printed_rows):
for j in range(cols):
print("{:<{width}.3f}".format(array[i][j], width=interval), end='')
print()
cols += 1
print() def printUpperArray(array, num_printed_cols, num_printed_rows, num_cols,
message, interval=10):
flat_array = array.flatten()
print(message)
ind = 0
for i in range(num_printed_rows):
for j in range(i):
print(' ' * 10)
for j in range(i, num_printed_cols):
print(flat_array[ind])
ind += 1
for j in range(num_printed_cols, num_cols):
ind += 1
print()
print() def printNumericTable(data_table, message='', num_printed_rows=0, num_printed_cols=0,
interval=10):
num_rows = data_table.getNumberOfRows()
num_cols = data_table.getNumberOfColumns()
layout = data_table.getDataLayout() if num_printed_rows != 0:
num_printed_rows = min(num_rows, num_printed_rows)
else:
num_printed_rows = num_rows if num_printed_cols != 0:
num_printed_cols = min(num_cols, num_printed_cols)
else:
num_printed_cols = num_cols block = BlockDescriptor()
if isFull(layout) or layout == NumericTableIface.csrArray:
data_table.getBlockOfRows(0, num_rows, readOnly, block)
printArray(block.getArray(), num_printed_cols, num_printed_rows,
num_cols, message, interval)
data_table.releaseBlockOfRows(block)
else:
packed_table = data_table.getBlockOfRowsAsDouble(0, num_rows) if isLower(layout):
printLowerArray(packed_table, num_printed_rows, message, interval)
elif isUpper(layout):
printUpperArray(packed_table, num_printed_cols, num_printed_rows,
num_cols, message, interval) def printNumericTables(data_table_1, data_table_2, title_1='', title_2='',
message='', num_printed_rows=0, interval=10, flt64=True):
num_rows_1 = data_table_1.getNumberOfRows()
num_rows_2 = data_table_2.getNumberOfRows()
num_cols_1 = data_table_1.getNumberOfColumns()
num_cols_2 = data_table_2.getNumberOfColumns() num_rows = min(num_rows_1, num_rows_2)
if num_printed_rows != 0:
num_rows = min(min(num_rows_1, num_rows_2), num_printed_rows) block1 = BlockDescriptor()
block2 = BlockDescriptor()
data_table_1.getBlockOfRows(0, num_rows, readOnly, block1)
data_table_2.getBlockOfRows(0, num_rows, readOnly, block2) data_float64_1 = block1.getArray()
data_float64_2 = block2.getArray() data_float64_1 = data_float64_1.flatten()
data_float64_2 = data_float64_2.flatten() decimals = '3' if flt64 else '0' print(message)
print("{:<{width}}".format(title_1, width=(interval * num_cols_1)), end='')
print("{:<{width}}".format(title_2, width=(interval * num_cols_2)))
for i in range(num_rows):
for j in range(num_cols_1):
print("{:<{width}.{dec}f}".format(data_float64_1[i * num_cols_1 + j], width=interval, dec=decimals), end='')
for j in range(num_cols_2):
print("{:<{width}.0f}".format(data_float64_2[i * num_cols_2 + j], width=interval), end='')
print()
print() data_table_1.releaseBlockOfRows(block1)
data_table_2.releaseBlockOfRows(block2) def getCRC32(input, prevRes=0):
from binascii import crc32
return crc32(input, prevRes) def copyBytes(dst, src, size):
for i in range(size):
dst[i] = src[i] def printALSRatings(usersOffsetTable, itemsOffsetTable, ratings):
nUsers = ratings.getNumberOfRows()
nItems = ratings.getNumberOfColumns()
ratingsData = ratings.getBlockOfRowsAsDouble(0, nUsers).flatten()
usersOffset = usersOffsetTable.getBlockOfRowsAsInt(0, 1).flatten()[0]
itemsOffset = itemsOffsetTable.getBlockOfRowsAsInt(0, 1).flatten()[0] print(" User ID, Item ID, rating")
for i in range(nUsers):
for j in range(nItems):
print("{}, {}, {:.6g}".format(i + usersOffset, j + itemsOffset, ratingsData[i * nItems + j])) def printTensor(dataTable, message="", nPrintedRows=0, nPrintedCols=0, interval=10):
dims = dataTable.getDimensions()
nRows = int(dims[0]) if nPrintedRows != 0:
nPrintedRows = min(nRows, nPrintedRows)
else:
nPrintedRows = nRows block = SubtensorDescriptor() dataTable.getSubtensor([], 0, nPrintedRows, readOnly, block) nCols = int(block.getSize() / nPrintedRows) if nPrintedCols != 0:
nPrintedCols = min(nCols, nPrintedCols)
else:
nPrintedCols = nCols printArray(block.getArray(), int(nPrintedCols), int(nPrintedRows), int(nCols), message, interval)
dataTable.releaseSubtensor(block) def printTensors(dataTable1, dataTable2, title1="", title2="", message="", nPrintedRows=0, interval=15):
dims1 = dataTable1.getDimensions()
nRows1 = int(dims1[0]) if nPrintedRows != 0:
nPrintedRows = min(nRows1, nPrintedRows)
else:
nPrintedRows = nRows1 block1 = SubtensorDescriptor()
dataTable1.getSubtensor([], 0, nPrintedRows, readOnly, block1)
nCols1 = int(block1.getSize() / nPrintedRows) dims2 = dataTable2.getDimensions()
nRows2 = int(dims2[0]) if nPrintedRows != 0:
nPrintedRows = min(nRows2, nPrintedRows)
else:
nPrintedRows = nRows2 block2 = SubtensorDescriptor()
dataTable2.getSubtensor([], 0, nPrintedRows, readOnly, block2)
nCols2 = int(block2.getSize() / nPrintedRows) dataType1 = block1.getArray().flatten()
dataType2 = block2.getArray().flatten() print(message)
print("{:<{width}}".format(title1, width=(interval * nCols1)), end='')
print("{:<{width}}".format(title2, width=(interval * nCols2))) for i in range(nPrintedRows):
for j in range(nCols1):
print("{v:<{width}.0f}".format(v=dataType1[i * nCols1 + j], width=interval), end='') for j in range(nCols2):
print("{:<{width}.3f}".format(dataType2[i * nCols2 + j], width=int(interval / 2)), end='')
print()
print() dataTable1.releaseSubtensor(block1)
dataTable2.releaseSubtensor(block2) def printTensor3d(dataTable, message="", nFirstDim=0, nSecondDim=0, interval=10):
dims = dataTable.getDimensions()
nRows = int(dims[0])
nCols = int(dims[1]) if nFirstDim != 0:
nFirstDim = min(nRows, nFirstDim)
else:
nFirstDim = nRows if nSecondDim != 0:
nSecondDim = min(nCols, nSecondDim)
else:
nSecondDim = nCols block = SubtensorDescriptor() print(message)
for i in range(nFirstDim):
dataTable.getSubtensor([i], 0, nSecondDim, readOnly, block) nThirdDim = block.getSize() / nSecondDim printArray(block.getArray(), int(nThirdDim), int(nSecondDim), int(nThirdDim), "", interval) dataTable.releaseSubtensor(block) def readTensorFromCSV(datasetFileName, allowOneColumn=False):
dataSource = FileDataSource(datasetFileName,
DataSourceIface.doAllocateNumericTable,
DataSourceIface.doDictionaryFromContext)
dataSource.loadDataBlock() nt = dataSource.getNumericTable()
size = nt.getNumberOfRows()
block = BlockDescriptor()
nt.getBlockOfRows(0, size, readOnly, block)
blockData = block.getArray().flatten() dims = [size]
if nt.getNumberOfColumns() > 1 or allowOneColumn:
dims.append(nt.getNumberOfColumns())
size *= dims[1] tensorData = np.array(blockData, dtype=np.float32) nt.releaseBlockOfRows(block) tensorData.shape = dims
tensor = HomogenTensor(tensorData, ntype=np.float32) return tensor