# -*- coding: utf-8 -*-
import copy
from numpy import *
import math
class ID3DTree(object):
def __init__(self):
self.tree = {}
self.dataSet = []
self.labels = [] def loadDataSet(self, path, labels):
recordlist = []
fp = open(path, "rb") # 读取文件内容
content = fp.read()
fp.close()
rowlist = content.splitlines() # 按行转换为一维表
recordlist = [row.split() for row in rowlist if row.strip()]
#print(recordlist)
self.dataSet = recordlist
self.labels = labels def train(self):
#labels = copy.deepcopy(self.labels)
labels=self.labels
self.tree = self.buildTree(self.dataSet, labels) # 创建决策树主程序 def buildTree(self, dataSet, labels):
#print('zhesh1',dataSet,'\n')
cateList = [data[-1] for data in dataSet] # 抽取源数据集的决策标签列
#print(cateList)
# 程序终止条件1 : 如果classList只有一种决策标签,停止划分,返回这个决策标签
if cateList.count(cateList[0]) == len(cateList):
return cateList[0]
# 程序终止条件2: 如果数据集的第一个决策标签只有一个 返回这个决策标签
#print(len(dataSet[0]))
if len(dataSet[0]) == 1:
return self.maxCate(cateList)
# 算法核心:
bestFeat = self.getBestFeat(dataSet) # 返回数据集的最优特征轴:
bestFeatLabel = labels[bestFeat]
tree = {bestFeatLabel: {}}
del (labels[bestFeat])#删除当前最优的特征轴,然后继续进行
# 抽取最优特征轴的列向量
uniqueVals = set([data[bestFeat] for data in dataSet]) # 去重
for value in uniqueVals:
subLabels = labels[:] # 将删除后的特征类别集建立子类别集
splitDataset = self.splitDataSet(dataSet, bestFeat, value) # 按最优特征列和值分割数据集
subTree = self.buildTree(splitDataset, subLabels) # 构建子树
tree[bestFeatLabel][value] = subTree
return tree def maxCate(self, catelist): # 计算出现最多的类别标签
items = dict([(catelist.count(i), i) for i in catelist])
return items[max(items.keys())]
#计算最优特征子函数,就是根据求出来的信息增益去比较,谁的大,谁的就最优,然后就可以作为根节点,不断的循环下去
def getBestFeat(self, dataSet):
# 计算特征向量维,其中最后一列用于类别标签,因此要减去
numFeatures = len(dataSet[0]) - 1 # 特征向量维数= 行向量维度-1
baseEntropy = self.computeEntropy(dataSet) # 基础熵:源数据的香农熵,这是总的信息熵
bestInfoGain = 0.0; # 初始化最优的信息增益
bestFeature = -1 # 初始化最优的特征轴
# 外循环:遍历数据集各列,计算最优特征轴
# i 为数据集列索引:取值范围 0~(numFeatures-1)
for i in range(numFeatures): # 抽取第i列的列向量
uniqueVals = set([data[i] for data in dataSet]) # 去重:该列的唯一值集
newEntropy = 0.0 # 初始化该列的香农熵
for value in uniqueVals: # 内循环:按列和唯一值计算香农熵
subDataSet = self.splitDataSet(dataSet, i, value) # 按选定列i和唯一值分隔数据集,这是除了类别标签外的类别。
#print('长度',len(subDataSet))
#print(subDataSet)
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * self.computeEntropy(subDataSet)
infoGain = baseEntropy - newEntropy # 计算最大增益
if (infoGain > bestInfoGain): # 如果信息增益>0;
bestInfoGain = infoGain # 用当前信息增益值替代之前的最优增益值
bestFeature = i # 重置最优特征为当前列
return bestFeature #计算总的信息熵
def computeEntropy(self, dataSet): # 计算香农熵
datalen = float(len(dataSet))
cateList = [data[-1] for data in dataSet] # 从数据集中得到类别标签
items = dict([(i, cateList.count(i)) for i in cateList]) # 得到类别为key,出现次数value的字典
infoEntropy = 0.0 # 初始化香农熵
for key in items: # 计算香农熵
prob = float(items[key]) / datalen
infoEntropy -= prob * math.log(prob, 2) # 香农熵:= - p*log2(p) --infoEntropy = -prob * log(prob,2)
return infoEntropy # 分隔数据集:删除特征轴所在的数据列,返回剩余的数据集
# dataSet:数据集; axis:特征轴; value:特征轴的取值
def splitDataSet(self, dataSet, axis, value):
rtnList = []
for featVec in dataSet:
#print('what',featVec)
if featVec[axis] == value:
rFeatVec = featVec[:axis] # list操作 提取0~(axis-1)的元素
rFeatVec.extend(featVec[axis + 1:]) # list操作 将特征轴(列)之后的元素加回
rtnList.append(rFeatVec)
return rtnList def predict(self, inputTree, featLabels, testVec): # 分类器
root = inputTree.keys()[0] # 树根节点
secondDict = inputTree[root] # value-子树结构或分类标签
featIndex = featLabels.index(root) # 根节点在分类标签集中的位置
key = testVec[featIndex] # 测试集数组取值
valueOfFeat = secondDict[key] #
if isinstance(valueOfFeat, dict):
classLabel = self.predict(valueOfFeat, featLabels, testVec) # 递归分类
else:
classLabel = valueOfFeat
return classLabel # 存储树到文件
def storeTree(self, inputTree, filename):
fw = open(filename, 'w')
pickle.dump(inputTree, fw)
fw.close() # 从文件抓取树
def grabTree(self, filename):
fr = open(filename)
return pickle.load(fr)
dtree=ID3DTree()
dtree.loadDataSet("F:\python数据挖掘\Desktop\MLBook\chapter03\dataset.dat",['age','revenue','student','credit'])
dtree.train()
print(dtree.tree)
结果输出为:
{'age': {b'': b'yes', b'': {'student': {b'': b'yes', b'': b'no'}}, b'': {'credit': {b'': b'no', b'': b'yes'}}}}