Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6 题意给你一个只含()[]的字符串,问你最多能配成对的有多少个和字符。
区间dp的入门题。整理下思路dp[i][j]表示区间i~j之间最大的匹配字符数。
if ((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']')) ————>dp[i][j]=dp[i+1][j-1]+2; 懂吧
代码如下:
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream> using namespace std;
char s[];
int dp[][];
int main()
{
//freopen("de.txt","r",stdin);
while (~scanf("%s",&s))
{
if (s[]=='e')
break ;
memset(dp,,sizeof dp);
int len=strlen(s);
for (int k=;k<len;++k)
{
for (int i=,j=k;j<len;++i,++j)
{
if ((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
dp[i][j]=dp[i+][j-]+;
for (int x=i;x<j;x++)
dp[i][j]=max(dp[i][j],dp[i][x]+dp[x+][j]);
}
}
printf("%d\n",dp[][len-]);
}
return ;
}