【集合详解】HashMap源码解析

时间:2022-11-24 17:20:49
            一、HashMap概述
二、HashMap的数据结构
三、HashMap源码分析

1.继承
2、关键属性
3、结构
4、构造函数
5、扩容

四:总结

一、概述

  HashMap基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了不同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

  值得注意的是HashMap不是线程安全的,如果想要线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap。

二、数据结构

在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,hashmap也不例外。Hashmap实际上是一个数组和链表的结合体(在数据结构中,一般称之为“链表散列“),如图(竖排表示数组,横排表示数组元素【实际上是一个链表】)。
【集合详解】HashMap源码解析

图中,紫色部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中的第一个位置。
在JDK8中 又有了新的优化。桶中的元素不再唯一按照链表组合,也可以使用红黑树进行存储
【集合详解】HashMap源码解析

三、源码分析

继承

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable

关键属性

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// 序列号
private static final long serialVersionUID = 362498820763181265L;
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶(bucket)上的结点数大于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 当桶(bucket)上的结点数小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 桶中结构转化为红黑树对应的table的最小大小
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的幂次倍
transient Node<k,v>[] table;
// 存放具体元素的集
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 每次扩容和更改map结构的计数器
transient int modCount;
// 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
int threshold;
// 填充因子
final float loadFactor;
}

HashMap结构

JDK 7


/** Entry是单向链表。
* 它是 “HashMap链式存储法”对应的链表。
*它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
**/


transient Entry[] table;

static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
// 指向下一个节点
Entry<K,V> next;
final int hash;
// 构造函数。
// 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
}

JDK8

/** Entry是单向链表。 
* 它是 “HashMap链式存储法”对应的链表。
*它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
**/

static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;

Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
...

//红黑树节点
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}

/**
* Returns root of tree containing this node.
*/

final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}

构造函数

HashMap(int initialCapacity)

public HashMap(int initialCapacity) {
// 调用HashMap(int, float)型构造函数
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

public HashMap()

public HashMap() {
// 初始化填充因子
this.loadFactor = DEFAULT_LOAD_FACTOR;
}

public HashMap(Map

public HashMap(Map<? extends K, ? extends V> m) {
// 初始化填充因子
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 将m中的所有元素添加至HashMap中
putMapEntries(m, false);
}

注意:在hashMap中数组的大小都是默认指定为2的4次幂,以后容量也是2的n次幂。具体原因,下面putVal方法介绍。

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//table为空就创建
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//确定插入table的位置,算法是(n - 1) & hash
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//在table的i位置发生碰撞,有两种情况,1、key值是一样的,替换value值,
//2、key值不一样的有两种处理方式:2.1、存储在i位置的链表;2.2、存储在红黑树中
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//2.2
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//2.1
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//超过了链表的设置长度8就扩容
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果e不为空就替换旧的oldValue值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//threshold=newThr:(int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
//默认0.75*16,大于threshold值就扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

 Hash算法:

 
得到hash值

static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

解释:
h>>16:
得到通过h=key.hashCode()方法计算key的hashcode的值,通过计算出的hashcode的值向右移动16位,使原有的hashcode的值的高16位变低16位,高16位则统一都变为0。
异或运算:(h = key.hashCode()) ^ (h >>> 16)

原 来 的 hashCode : 1111 1111 1111 1111 0100 1100 0000 1010
移位后的hashCode: 0000 0000 0000 0000 1111 1111 1111 1111
进行异或运算 结果:1111 1111 1111 1111 1011 0011 1111 0101

这样做的好处是,可以将hashcode高位和低位的值进行混合做异或运算,而且混合后,低位的信息中加入了高位的信息,这样高位的信息被变相的保留了下来。掺杂的元素多了,那么生成的hash值的随机性会增大。

获取位置:
接着我们看该重新产生的hashcode应该对应的位置。

源码中模运算是在这个indexFor( )函数里完成的。

bucketIndex = indexFor(hash, table.length);

indexFor的代码也很简单,就是把散列值和数组长度做一个”与”操作

static int indexFor(int h, int length) {
return h & (length-1);
}

顺便说一下,这也正好解释了为什么HashMap的数组长度要取2的整次幂。因为这样(数组长度-1)正好相当于一个“低位掩码”。“与”操作的结果就是散列值的高位全部归零,只保留低位值,用来做数组下好相当于一个“低位掩码”。“与”操作的结果就是散列值的高位全部归零,只保留低位值,用来做数组下标访问。以初始长度16为例,16-1=15。2进制表示是00000000 00000000 00001111。和某散列值“与”操作如下,结果就是截取了最低的四位值。

        10100101 11000100 00100101
& 00000000 00000000 00001111
----------------------------------
00000000 00000000 00000101 //高位全部归零,只保留末四位

整个流程如下:
【集合详解】HashMap源码解析

这样我们已经得到了该元素的在数组中的位置。 在put时,由于根据的是hashcode来put元素的,假如当前数组位置已经存在元素,则会通过链表形式在该位置追加元素。(jdk7)
【集合详解】HashMap源码解析

在JDK8中,有所改进的是,当加入链表元素的数量达到某固定值时,则改为红黑树结构存储。

//put(K key,V value)函数 
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab;
Node<K,V> p;
int n, i;
//如果table为空或者长度为0,则resize()
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//找到key值对应的槽并且是第一个,直接加入
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e;
K k;
//第一个node的hash值即为要加入元素的hash
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k)))){
e = p;
}else if (p instanceof TreeNode)//第一个节点是TreeNode,即tree-bin
/*Tree version of putVal.
*final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,int h, K k, V v)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//不是TreeNode,即为链表,遍历链表
for (int binCount = 0; ; ++binCount) {
/*到达链表的尾端也没有找到key值相同的节点,
*则生成一个新的Node,并且判断链表的节点个数是不是到达转换成红黑树的上界
*达到,则转换成红黑树
*/

if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
//返回旧的value值
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

扩容:

final Node<K,V>[] resize() {
// 当前table保存
Node<K,V>[] oldTab = table;
// 保存table大小
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 保存当前阈值
int oldThr = threshold;
int newCap, newThr = 0;
// 之前table大小大于0
if (oldCap > 0) {
// 之前table大于最大容量
if (oldCap >= MAXIMUM_CAPACITY) {
// 阈值为最大整形
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 容量翻倍,使用左移,效率更高
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 阈值翻倍
newThr = oldThr << 1; // double threshold
}
// 之前阈值大于0
else if (oldThr > 0)
newCap = oldThr;
// oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步)
else {
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 新阈值为0
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 初始化table
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 之前的table已经初始化过
if (oldTab != null) {
// 复制元素,重新进行hash
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
// 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割,分成两个不同的链表,完成rehash
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

  说明:进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。  在resize前和resize后的元素布局如下
  【集合详解】HashMap源码解析
说明:上图只是针对了数组下标为2的桶中的各个元素在扩容后的分配布局,其他各个桶中的元素布局可以以此类推。 从putVal源代码中我们可以知道,当插入一个元素的时候size就加1,若size大于threshold的时候,就会进行扩容。假设我们的capacity大小为32,loadFator为0.75,则threshold为24 = 32 * 0.75,此时,插入了25个元素,并且插入的这25个元素都在同一个桶中,桶中的数据结构为红黑树,则还有31个桶是空的,也会进行扩容处理,其实,此时,还有31个桶是空的,好像似乎不需要进行扩容处理,但是是需要扩容处理的,因为此时我们的capacity大小可能不适当。我们前面知道,扩容处理会遍历所有的元素,时间复杂度很高;前面我们还知道,经过一次扩容处理后,元素会更加均匀的分布在各个桶中,会提升访问效率。所以,说尽量避免进行扩容处理,也就意味着,遍历元素所带来的坏处大于元素在桶中均匀分布所带来的好处。

总结:

本文介绍了hashMap的数据结构,重点分析了一些源码构造函数和扩容函数。以及对hash算法进行了简单剖析。如果不足,请多指正。

参考博客如下:
JDK1.8源码分析之HashMap(一)
java HashMap源码分析(JDK8)
【集合】HashMap源码解析