看到最长上升子序列肯定是DP
设\(f_i\)表示计算到当前,长度为\(i\)的最长上升子序列的最后一项的最小值,显然\(f_i\)是一个单调递增的序列。
转移:对于当前计算的元素\(x\),它的取值范围为\([l,r]\),设当前可以转移的区间为\([j,k]\)(即对于\(\forall p \in [j,k] , f_p \in [l,r)\)且\(f_{j-1} < l , f_{k + 1} \geq r\)),则对于\(\forall p \in [j,k]\)都有\(f_{p + 1} = f_{p} + 1\)(因为序列\(f_i\)是单调递增的,所以转移一定更优)且\(f_j = l\)。
考虑这个转移方程,它的实质就是:删去第\(k+1\)个元素,第\(j\)到\(k\)个元素统一\(+1\),在第\(j\)个元素的左边插入一个值为\(l\)的元素。其实就是平衡树的基本操作,使用平衡树维护即可。
还有我也不知道我的Splay为什么每一次要随机一个点Splay到根才能过……
#include<bits/stdc++.h>
#define MAXN 300010
#define inf 0x7fffffff
using namespace std;
struct node{
int ch[2] , fa , num , add;
}Tree[MAXN];
int cntNode = 2 , N , root = 1;
inline bool son(int dir){
return Tree[Tree[dir].fa].ch[1] == dir;
}
inline void ZigZag(int dir){
bool f = son(dir);
if(Tree[dir].fa == root)
root = dir;
Tree[Tree[dir].fa].ch[f] = Tree[dir].ch[f ^ 1];
Tree[Tree[dir].ch[f ^ 1]].fa = Tree[dir].fa;
int x = Tree[Tree[dir].fa].fa;
Tree[x].ch[son(Tree[dir].fa)] = dir;
Tree[Tree[dir].fa].fa = dir;
Tree[dir].ch[f ^ 1] = Tree[dir].fa;
Tree[dir].fa = x;
}
inline void pushdown(int dir){
if(Tree[dir].add){
Tree[Tree[dir].ch[0]].add += Tree[dir].add;
Tree[Tree[dir].ch[1]].add += Tree[dir].add;
Tree[Tree[dir].ch[0]].num += Tree[dir].add;
Tree[Tree[dir].ch[1]].num += Tree[dir].add;
Tree[dir].add = 0;
}
}
inline void Splay(int dir , int fa){
pushdown(dir);
while(Tree[dir].fa != fa)
if(Tree[Tree[dir].fa].fa == fa)
ZigZag(dir);
else{
if(son(Tree[dir].fa) == son(dir))
ZigZag(Tree[dir].fa);
else
ZigZag(dir);
ZigZag(dir);
}
}
void insert(int &now , int num , int fa){
if(now == 0){
now = ++cntNode;
Tree[now].num = num;
Tree[now].fa = fa;
Splay(now , 0);
return;
}
pushdown(now);
insert(Tree[now].ch[Tree[now].num < num] , num , now);
}
void getPre(int now , int num , int minN){
if(now == 0){
Splay(minN , 0);
return;
}
pushdown(now);
if(Tree[now].num == num){
int t = Tree[now].ch[0];
while(t){
pushdown(t);
if(Tree[t].num != num)
minN = t;
t = Tree[t].ch[1];
}
Splay(minN , 0);
return;
}
if(Tree[now].num < num)
getPre(Tree[now].ch[1] , num , Tree[now].num > Tree[minN].num ? now : minN);
else
getPre(Tree[now].ch[0] , num , minN);
}
void getNXT(int now , int num , int maxN){
if(now == 0){
Splay(maxN , root);
return;
}
pushdown(now);
if(Tree[now].num == num){
int t = Tree[now].ch[1];
while(t){
pushdown(t);
maxN = t;
t = Tree[t].ch[0];
}
Splay(maxN , root);
return;
}
if(Tree[now].num < num)
getNXT(Tree[now].ch[1] , num , maxN);
else
getNXT(Tree[now].ch[0] , num , Tree[now].num < Tree[maxN].num ? now : maxN);
}
inline void find(int dir){
if(Tree[dir].fa)
find(Tree[dir].fa);
pushdown(dir);
}
int main(){
srand((unsigned)time(0));
int ans = 0;
scanf("%d" , &N);
Tree[1].ch[1] = 2;
Tree[2].num = inf;
Tree[2].fa = 1;
for(int i = 1 ; i <= N ; i++){
int a , b;
scanf("%d%d" , &a , &b);
getPre(root , a , 1);
getNXT(root , b - 1 , 2);
Tree[Tree[Tree[root].ch[1]].ch[0]].add++;
Tree[Tree[Tree[root].ch[1]].ch[0]].num++;
if(Tree[Tree[root].ch[1]].ch[1]){
ZigZag(Tree[root].ch[1]);
getNXT(Tree[root].ch[1] , Tree[root].num , 2);
Tree[Tree[root].ch[1]].ch[0] = Tree[root].ch[0];
root = Tree[root].ch[1];
Tree[Tree[root].ch[0]].fa = root;
Tree[root].fa = 0;
}
else
ans++;
insert(Tree[root].ch[Tree[root].num < a] , a , root);
int t = rand() % (i + 2) + 1;
find(t);
Splay(t , 0);
}
cout << ans;
return 0;
}