每日一小练——高速Fibonacci数算法

时间:2023-03-08 16:27:50
每日一小练——高速Fibonacci数算法

上得厅堂,下得厨房,写得代码,翻得围墙,欢迎来到睿不可挡的每日一小练!

题目:高速Fibonacci数算法

内容:先说说Fibonacci数列,它的定义是数列:f1,f2....fn有例如以下规律:

每日一小练——高速Fibonacci数算法

尝试寻找高速的求出fn的方法

我的解法:上来没多想,打开vs2013就敲了起来,问题果然非常easy,分分钟就超神。。奥,不正确就攻克了!

事实上题目中就给出了这个算法的递归形式,所以首先我想到的是递归解法,只是由于求解高速方法在递归之前,我编写了一个非递归的算法

#include <iostream>
using namespace std; int _tmain(int argc, _TCHAR* argv[])
{
int f(int n);
cout << f(7) << endl;
getchar();
return 0;
} int f(int n)
{
int temp = 0, f1 = 1, f2 = 1;
if (n == 1 || n == 2)
return 1;
else
{
for (int i = 1; i < (n - 1); i++)
{
temp = f1 + f2;
f2 = f1;
f1 = temp;
}
return temp;
}
}

然后我又编写了递归的算法

#include <iostream>
using namespace std; int _tmain(int argc, _TCHAR* argv[])
{
int f(int n);
cout << f(7) << endl;
getchar();
return 0;
} int f(int n)
{
if (n == 1|| n==2)
return 1;
if (n > 2)
return f(n - 1) + f(n - 2);
}

在递归的基础上,有人提出了更犀利的算法,这个我没有想到。。羞愧。。。

这个算法利用了一些技巧矩阵,通过矩阵乘法来算Fibonacci的加法,然后通过我在《数值自乘非递归解》中提到的利用区分奇偶数来利用指数二进制堆乘的方法,降低乘法的次数。

ps:

每日一小练——高速Fibonacci数算法

利用上面的矩阵连乘,在矩阵11位置的数就是矩阵11和21的和,而且用矩阵11和21表示Fibonacci的f(n-1)和f(n-2),通过连乘来求fn。

#include <iostream>
using namespace std; int _tmain(int argc, _TCHAR* argv[])
{
int f(int n);
cout << f(7) << endl;
getchar();
return 0;
} int f(int n)
{
void matrix_power(int a, int b, int c, int d, int n, int *aa, int *bb, int *cc, int *dd);
int a, b, c, d;
if (n == 1 || n == 2)
{
return 1;
}
else
{
matrix_power(1, 1, 1, 0, n - 2, &a, &b, &c, &d);
return a + b;
}
} void matrix_power(int a, int b, int c, int d, int n, int *aa, int *bb, int *cc, int *dd)
{
int xa, xb, xc, xd;
if (n == 1)
*aa = a, *bb = b, *cc = c, *dd = d;
else if (n & 0x01 == 1)
{
matrix_power(a, b, c, d, n - 1, &xa, &xb, &xc, &xd);
*aa = a*xa + b*xc;
*bb = a*xb + b*xd;
*cc = c*xa + d*xc;
*dd = c*xb + d*xd;
}
else
{
matrix_power(a, b, c, d, n >> 1, &xa, &xb, &xc, &xd);
*aa = xa*xa + xb*xc;
*bb = xa*xb + xb*xd;
*cc = xc*xa + xd*xc;
*dd = xc*xb + xd*xd;
}
}

三段代码的实验结果同例如以下:

每日一小练——高速Fibonacci数算法

欢迎大家增加每日一小练,嘿嘿!

每天练一练,日久见功夫,加油!

      -End-

參考文献:《c语言名题精选百则》