收藏:http://www.tuicool.com/articles/QRr2Qb
把每一天看成一个点,每个女孩也看成一个点,增加源和汇s、t,源向每一天连上[0,d]的边,每一天与每个女孩如果有拍照任务的话连上[l,r]的边,
每个女孩与汇连上[g,oo]的边,于是构成一个有上下界的图。
所以这道题目我们可以转换一下,只要连一条T → S的边,流量为无穷,没有下界,那么原图就得到一个无源汇的循环流图。
接下来的事情一样:原图中的边的流量设成*流量ci – bi。新建源点SS汇点TT,求Mi,连边。然后求SS → TT最大流,判是否满流。
view code#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
typedef long long ll;
const int INF = 1<<30;
const int N = 1500;
const int M = 1e6;
int n, m, pre[N], d[N], cur[N], s, t, ss, tt;
int dis[N], in[N], low[36666], lcnt;
bool vis[N]; struct edge
{
int u, v, cap, next;
edge() {}
edge(int u, int v, int c, int next):u(u),v(v),cap(c),next(next) {}
}e[M];
int ecnt; void addedge(int u, int v, int w)
{
e[ecnt] = edge(u, v, w, pre[u]);
pre[u] = ecnt++;
e[ecnt] = edge(v, u, 0, pre[v]);
pre[v] = ecnt++;
} bool BFS(int s, int t)
{
memset(vis, 0, sizeof(vis));
queue<int >q;
q.push(s);
vis[s] = 1;
d[s] = 0;
while(!q.empty())
{
int x = q.front(); q.pop();
for(int i=pre[x]; ~i; i=e[i].next)
{
int v = e[i].v;
if(!vis[v] && e[i].cap>0)
{
vis[v] = 1;
d[v] = d[x] + 1;
q.push(v);
}
}
}
return vis[t];
} ll DFS(int x, ll c, int s, int t)
{
if(x==t || c==0) return c;
ll flow = 0, f;
for(int &i = cur[x]; ~i; i = e[i].next)
{
int v = e[i].v;
if(d[v] == d[x]+1 && (f=DFS(v, min(c, (ll)e[i].cap), s, t))>0)
{
e[i].cap -= f;
e[i^1].cap += f;
flow += f;
c -= f;
if(c==0) break;
}
}
return flow;
} ll Maxflow(int s, int t)
{
ll flow = 0;
while(BFS(s, t))
{
memcpy(cur, pre, sizeof(pre));
flow += DFS(s, INF, s, t);
}
return flow;
} int main()
{
// freopen("in.txt", "r", stdin);
while(scanf("%d%d", &n, &m)>0)
{
ll sum = 0;
int g, id, R, k;
s = 0, t = m+n+1;
ss = n+m+2, tt = m+n+3;
memset(pre, -1, sizeof(pre));
memset(in, 0, sizeof(in));
ecnt = 0, lcnt = 0;
for(int i=1; i<=m; i++)
{
scanf("%d", &g);
in[i+n] -= g;
in[t] += g;
}
for(int i=1; i<=n; i++)
{
scanf("%d%d", &k, &dis[i]);
for(int j=0; j<k; j++)
{
scanf("%d%d%d", &id, &low[++lcnt], &R);
addedge(i, id+n+1, R-low[lcnt]);
in[i] -= low[lcnt];
in[id+n+1] += low[lcnt];
}
}
for(int i= 1; i<=n; i++) addedge(s, i, dis[i]);
for(int i= 1; i<=m; i++) addedge(i+n, t, INF);
addedge(t, s, INF);
for(int i = s; i<=t; i++)
{
if(in[i]>0) addedge(ss, i, in[i]), sum += in[i];
if(in[i]<0) addedge(i, tt, -in[i]);
}
if(Maxflow(ss, tt)==sum)
{
Maxflow(s, t);
addedge(t, s, -INF);
int ans = 0;
for(int i = pre[0]; ~i; i=e[i].next)
{
ans += e[i^1].cap ;
// printf("u = %d, cap = %d\n", e[i^1].u, e[i^1].cap);
}
printf("%d\n", ans);
for(int i=1; i<=lcnt; i++) printf("%d\n", e[2*i-1].cap+low[i]);
}
else puts("-1");
puts("");
}
return 0;
}