1、
2、
// ZC: 工程-->右键-->属性--> 配置属性:
// ZC: C/C++ -->常规-->附加包含目录,里面添加:
// ZC: E:\OpenGL_something\glfw-3.2.1.bin.WIN32\include
// ZC: E:\OpenGL_something\glm-0.9.8.5
// ZC: E:\OpenGL_something\glew-2.1.0\include
// ZC: 链接器-->输入-->附加依赖项,里面添加:
// ZC: E:\OpenGL_something\glfw-3.2.1.bin.WIN32\lib-vc2010\glfw3.lib 这个应该是静态链接的lib(动态的貌似是glfw3dll.lib[ZC:我是看文件大小判断的...])
// ZC: E:\OpenGL_something\glew-2.1.0\lib\Release\Win32\glew32.lib
// ZC: opengl32.lib
// ZC: glu32.lib
// ZC: kernel32.lib
// ZC: user32.lib
// ZC: gdi32.lib
// ZC: winspool.lib
// ZC: shell32.lib
// ZC: ole32.lib
// ZC: oleaut32.lib
// ZC: uuid.lib
// ZC: comdlg32.lib
// ZC: advapi32.lib
// ZC: 关于使用glew32.lib还是glew32s.lib:
// ZC: 看文件大小判断 静态链接的lib应该是glew32s.lib,但是我在编译的时候,发现无法定位函数grewInit(...)... 于是只能使用动态的glew32s.lib
// ZC: 于是还要将"E:\OpenGL_something\glew-2.1.0\bin\Release\Win32\glew32.dll"复制到项目的"E:\Project_VS10\OpenGL_Console_zz\Test\Test"中 // Include standard headers
#include <stdio.h>
#include <stdlib.h> // Include GLEW
#include <GL/glew.h> // Include GLFW
#include <GLFW/glfw3.h>
extern GLFWwindow* window; // Include GLM
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
using namespace glm; #include <common/shader.hpp> int mainTutorial03Matrices( void )
{
// Initialise GLFW
if( !glfwInit() )
{
fprintf( stderr, "Failed to initialize GLFW\n" );
getchar();
return -;
} glfwWindowHint(GLFW_SAMPLES, );
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, );
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, );
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); //We don't want the old OpenGL // Open a window and create its OpenGL context
/*window = glfwCreateWindow( 1024, 768, "Tutorial 03 - Matrices", NULL, NULL);*/
window = glfwCreateWindow( , , "Tutorial 03 - Matrices", NULL, NULL);
if( window == NULL ){
fprintf( stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n" );
getchar();
glfwTerminate();
return -;
}
glfwMakeContextCurrent(window); // Initialize GLEW
glewExperimental = true; // Needed for core profile
if (glewInit() != GLEW_OK) {
fprintf(stderr, "Failed to initialize GLEW\n");
getchar();
glfwTerminate();
return -;
} // Ensure we can capture the escape key being pressed below
glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE); // Dark blue background
glClearColor(0.0f, 0.0f, 0.4f, 0.0f); GLuint VertexArrayID;
glGenVertexArrays(, &VertexArrayID);
glBindVertexArray(VertexArrayID); // Create and compile our GLSL program from the shaders
GLuint programID = LoadShaders( "../Test/shaders/SimpleTransform_03.vertexshader", "../Test/shaders/SingleColor_03.fragmentshader" ); // Get a handle for our "MVP" uniform
GLuint MatrixID = glGetUniformLocation(programID, "MVP"); // Projection matrix : 45?Field of View, 4:3 ratio, display range : 0.1 unit <-> 100 units
//glm::mat4 Projection = glm::perspective(glm::radians(45.0f), 4.0f / 3.0f, 0.1f, 100.0f);
glm::mat4 Projection = glm::perspective(glm::radians(45.0f), 4.0f / 3.0f, 0.1f, 100.0f);
// Or, for an ortho camera :
//glm::mat4 Projection = glm::ortho(-10.0f, 10.0f, -10.0f, 10.0f, 0.0f, 100.0f); // In world coordinates // Camera matrix
//glm::mat4 View = glm::lookAt(
// glm::vec3(4,3,3), // Camera is at (4,3,3), in World Space
// glm::vec3(0,0,0), // and looks at the origin
// glm::vec3(0,1,0) // Head is up (set to 0,-1,0 to look upside-down)
// );
glm::mat4 View = glm::lookAt(
glm::vec3(,,),// Camera is at (4,3,3), in World Space
glm::vec3(,,), // and looks at the origin
glm::vec3(,,) // Head is up (set to 0,-1,0 to look upside-down)
);
// ZC: 上面的参数的理解:
// ZC: 第一个参数:摄像机所在的位置(世界坐标系)
// ZC: 第二个参数:摄像机往哪个点看过去(摄像机往哪个点的方向看去) (ZC: 这个应该是参与计算的)
// ZC: 第三个参数:头的位置(这里的"头" 实际就是指"摄像机"): (ZC: 这个稍微测试了一下,发现 应该就是指方向[即 其次坐标的"w"是0])
// ZC: (0,1,0):就是正常的人类头顶朝上的样子,
// ZC: (1,0,0):就是头往X轴正方向倒90°,
// ZC: (0,0,1):应该就是头朝Z轴正方向倒90°(也就是往后倒,稍微验证了一下,应该就是这样子的) // Model matrix : an identity matrix (model will be at the origin)
glm::mat4 Model = glm::mat4(1.0f);
//glm::mat4 Model = glm::mat4(
// 2.0f, 0.0f, 0.0f, 0.0f,
// 0.0f, 2.0f, 0.0f, 0.0f,
// 0.0f, 0.0f, 2.0f, 0.0f,
// 0.0f, 0.0f, 0.0f, 1.0f);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("\n"); // Our ModelViewProjection : multiplication of our 3 matrices
glm::mat4 MVP = Projection * View * Model; // Remember, matrix multiplication is the other way around
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("\n"); static const GLfloat g_vertex_buffer_data[] = {
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
};
//static const GLfloat g_vertex_buffer_data[] = {
// -2.0f, -2.0f, 0.0f,
// 2.0f, -2.0f, 0.0f,
// 0.0f, 2.0f, 0.0f,
//}; GLuint vertexbuffer;
glGenBuffers(, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW); do{ // Clear the screen
glClear( GL_COLOR_BUFFER_BIT ); // Use our shader
glUseProgram(programID); // Send our transformation to the currently bound shader,
// in the "MVP" uniform
glUniformMatrix4fv(MatrixID, , GL_FALSE, &MVP[][]); // 1rst attribute buffer : vertices
glEnableVertexAttribArray();
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glVertexAttribPointer(
, // attribute. No particular reason for 0, but must match the layout in the shader.
, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
, // stride
(void*) // array buffer offset
); // Draw the triangle !
glDrawArrays(GL_TRIANGLES, , ); // 3 indices starting at 0 -> 1 triangle glDisableVertexAttribArray(); // Swap buffers
glfwSwapBuffers(window);
glfwPollEvents(); } // Check if the ESC key was pressed or the window was closed
while( glfwGetKey(window, GLFW_KEY_ESCAPE ) != GLFW_PRESS &&
glfwWindowShouldClose(window) == ); // Cleanup VBO and shader
glDeleteBuffers(, &vertexbuffer);
glDeleteProgram(programID);
glDeleteVertexArrays(, &VertexArrayID); // Close OpenGL window and terminate GLFW
glfwTerminate(); return ;
}
3、改变中间的一段代码 用于测试:
3.1、上面的代码执行的现象:
3.2、放大2倍(方式1):
// Model matrix : an identity matrix (model will be at the origin)
//glm::mat4 Model = glm::mat4(1.0f); // ZC: 变化的是这里,把X/Y/Z坐标都扩大了2倍
glm::mat4 Model = glm::mat4(
2.0f, 0.0f, 0.0f, 0.0f,
0.0f, 2.0f, 0.0f, 0.0f,
0.0f, 0.0f, 2.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("\n"); // Our ModelViewProjection : multiplication of our 3 matrices
glm::mat4 MVP = Projection * View * Model; // Remember, matrix multiplication is the other way around
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("\n"); static const GLfloat g_vertex_buffer_data[] = {
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
};
现象:
3.3、放大2倍(方式2):
// Model matrix : an identity matrix (model will be at the origin)
glm::mat4 Model = glm::mat4(1.0f); // ZC: 这里没改变
//glm::mat4 Model = glm::mat4(
// 2.0f, 0.0f, 0.0f, 0.0f,
// 0.0f, 2.0f, 0.0f, 0.0f,
// 0.0f, 0.0f, 2.0f, 0.0f,
// 0.0f, 0.0f, 0.0f, 1.0f);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("\n"); // Our ModelViewProjection : multiplication of our 3 matrices
glm::mat4 MVP = Projection * View * Model; // Remember, matrix multiplication is the other way around
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("\n");//static const GLfloat g_vertex_buffer_data[] = {
// -1.0f, -1.0f, 0.0f,
// 1.0f, -1.0f, 0.0f,
// 0.0f, 1.0f, 0.0f,
//};
static const GLfloat g_vertex_buffer_data[] = { // ZC: 这里改变了,手动的将 三角形的3个点的坐标放大了
-2.0f, -2.0f, 0.0f,
2.0f, -2.0f, 0.0f,
0.0f, 2.0f, 0.0f,
};
现象:
3.4、测试:刚开始 放大 是使用的 “glm::mat4 Model = glm::mat4(2.0f);”,实际这是没有 放大效果的(视觉上 大小没变化),原因寻找:Model的矩阵信息为:
2.0f 0.0f 0.0f 0.0f
0.0f 2.0f 0.0f 0.0f
0.0f 0.0f 2.0f 0.0f
0.0f 0.0f 0.0f 2.0f
∵ 它把 X/Y/Z轴的数据放大了,但是 它的最后一行数据“0.0f 0.0f 0.0f 2.0f” 实现了类似这样的功能:把摄像机拉远了一倍距离。这个的数学解释 我暂时还不太明白,只是做了一个实验 验证了一下
3.4.1、
glm::mat4 View = glm::lookAt(
glm::vec3(,,),// Camera is at (4,3,3), in World Space
glm::vec3(,,), // and looks at the origin
glm::vec3(,,) // Head is up (set to 0,-1,0 to look upside-down)
); // Model matrix : an identity matrix (model will be at the origin)
//glm::mat4 Model = glm::mat4(1.0f);
glm::mat4 Model = glm::mat4(2.0f); // ZC: 改了这里
//glm::mat4 Model = glm::mat4(
// 2.0f, 0.0f, 0.0f, 0.0f,
// 0.0f, 2.0f, 0.0f, 0.0f,
// 0.0f, 0.0f, 2.0f, 0.0f,
// 0.0f, 0.0f, 0.0f, 1.0f);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("\n"); // Our ModelViewProjection : multiplication of our 3 matrices
glm::mat4 MVP = Projection * View * Model; // Remember, matrix multiplication is the other way around
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("\n");
现象:
3.4.2、
glm::mat4 View = glm::lookAt(
glm::vec3(,,),// ZC: 这里,手动将摄像机 拉远了一倍距离
glm::vec3(,,), // and looks at the origin
glm::vec3(,,) // Head is up (set to 0,-1,0 to look upside-down)
); // Model matrix : an identity matrix (model will be at the origin)
//glm::mat4 Model = glm::mat4(1.0f);
//glm::mat4 Model = glm::mat4(2.0f);
glm::mat4 Model = glm::mat4( // ZC: 这里,将 X/Y/Z轴数据放大1倍
2.0f, 0.0f, 0.0f, 0.0f,
0.0f, 2.0f, 0.0f, 0.0f,
0.0f, 0.0f, 2.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("%f, %f, %f, %f\n", Model[].x, Model[].y, Model[].z, Model[].w);
printf("\n"); // Our ModelViewProjection : multiplication of our 3 matrices
glm::mat4 MVP = Projection * View * Model; // Remember, matrix multiplication is the other way around
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("%f, %f, %f, %f\n", MVP[].x, MVP[].y, MVP[].z, MVP[].w);
printf("\n");
现象:
ZC:可以看到,虽然 矩阵Model 的信息不同,但是 最后的 矩阵MVP 的信息是一样的,∴ 肉眼看起来 效果一样...
4、尝试 C++中计算好位置,直接传入 GLSL(不要再在 GLSL中去做乘法计算)
ZC:貌似 这个例子中使用的 "glDrawArrays(GL_TRIANGLES, 0, 3);"的方式,暂时不支持实现 这个尝试,看后面会不会 学习到别的方式,或者 后面水平高了再来尝试吧...
5、