Java集合类(八)HashMap1.8

时间:2021-04-27 17:00:11

一、HashMap存储结构

从结构实现来讲,HashMap是数组+链表+红黑树实现的,如下如所示。

Java集合类(八)HashMap1.8

这里需要讲明白两个问题:数据底层具体存储的是什么?这样的存储方式有什么优点呢?
(1) 从源码可知,HashMap类中有一个非常重要的内部类,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。我们来看Node是何物。

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;    //用来定位数组索引位置
        final K key;
        V value;
        Node<K,V> next;   //链表的下一个node

        Node(int hash, K key, V value, Node<K,V> next) { ... }
        public final K getKey(){ ... }
        public final V getValue() { ... }
        public final String toString() { ... }
        public final int hashCode() { ... }
        public final V setValue(V newValue) { ... }
        public final boolean equals(Object o) { ... }
}

Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。
(2) HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法和链地址法等来解决问题,Java中HashMap采用了链地址法。链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。例如程序执行下面代码:
map.put(“美团”,”小美”);

系统将调用”美团”这个key的hashCode()方法得到其hashCode 值(该方法适用于每个Java对象),然后再通过Hash算法的后两步运算(高位运算和取模运算,下文有介绍)来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。当然Hash算法计算结果越分散均匀,Hash碰撞的概率就越小,map的存取效率就会越高。

如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。

在理解Hash和扩容流程之前,我们得先了解下HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码如下:

     int threshold;             // 所能容纳的key-value对极限 
     final float loadFactor;    // 负载因子
     int modCount;  
     int size;

首先,Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。

结合负载因子的定义公式可知,threshold就是在此loadFactor和length(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子loadFactor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。

size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。而modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。

在HashMap中,哈希桶数组table的长度length大小必须为2的n次方(一定是合数),这是一种非常规的设计,常规的设计是把桶的大小设计为素数。Hashtable初始化桶大小为(16*0.75)11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证还是素数)。HashMap采用这种非常规设计,主要是为了在取模和扩容时做优化,同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。

这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。

二、HashMap分析

HashMap的内部功能实现很多,本文主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具有代表性的点深入展开讲解。

1. 确定哈希桶数组索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):
方法一:

static final int hash(Object key) {   //jdk1.8 & jdk1.7
     int h;
     // h = key.hashCode() 为第一步 取hashCode值
     // h ^ (h >>> 16) 为第二步 高位参与运算
     return (key == null) ? 0 : (h =           key.hashCode()) ^ (h >>> 16); //1.8里的
}

方法二:

static int indexFor(int h, int length) {  //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
     return h & (length-1);  //第三步 取模运算
}

这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算。
对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:调用方法二来计算该对象应该保存在table数组的哪个索引处。

这个方法非常巧妙,它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

在JDK1.8的实现中,优化了高位运算的算法,通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。
下面举例说明下,n为table的长度。

Java集合类(八)HashMap1.8

2. 分析HashMap的put方法

HashMap的put方法执行过程可以通过下图来理解,自己有兴趣可以去对比源码更清楚地研究学习。

Java集合类(八)HashMap1.8

  • ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
  • ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
  • ③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
  • ④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
  • ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
  • ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

HashMap的put方法源码如下:

  public V put(K key, V value) {
        //hash(key) 对key取hash值
        return putVal(hash(key), key, value, false, true);
   }
 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 步骤①:tab为空则创建数组
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 步骤②:计算index,并对null做处理 ,(n - 1) & hash 计算数组下标,相关于取模操作但是更快
        //如果tab[i]位置为空,直接new一个node放到该坐标处
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        //tab[i]处有值,使用拉链法处理冲突数据
        else {
            Node<K,V> e; K k;
             // 步骤③:节点key存在,直接覆盖value
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
             // 步骤④:判断该链表是否为红黑树,如何是,添加红黑树节点
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
             // 步骤⑤:该链为链表
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //链表长度大于8转换为红黑树进行处理
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // key已经存在直接覆盖value
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 步骤⑥:超过最大容量 就扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

3. 扩容机制

扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。

1.7的扩容代码:

 void resize(int newCapacity) {   //传入新的容量
     Entry[] oldTable = table;    //引用扩容前的Entry数组
      int oldCapacity = oldTable.length;         
      if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)了
          threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
          return;
      }

      Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组
     transfer(newTable);                         //!!将数据转移到新的Entry数组里
     table = newTable;                           //HashMap的table属性引用新的Entry数组
     threshold = (int)(newCapacity * loadFactor);//修改阈值
}
  void transfer(Entry[] newTable) {
      Entry[] src = table;                   //src引用了旧的Entry数组
      int newCapacity = newTable.length;
      for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
          Entry<K,V> e = src[j];             //取得旧Entry数组的每个元素
          if (e != null) {
              src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
              do {
                  Entry<K,V> next = e.next;
                 int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
                 e.next = newTable[i]; //标记[1]
                 newTable[i] = e;      //将元素放在数组上
                 e = next;             //访问下一个Entry链上的元素
             } while (e != null);
         }
     }
}

newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。
下面举个例子说明下扩容过程。假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。其中的哈希桶数组table的size=2, 所以key = 3、7、5,put顺序依次为 5、7、3。在mod 2以后都冲突在table[1]这里了。这里假设负载因子 loadFactor=1,即当键值对的实际大小size 大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize成4,然后所有的Node重新rehash的过程。

Java集合类(八)HashMap1.8

1.8的扩容代码

  final Node<K,V>[] resize() {
      Node<K,V>[] oldTab = table;
      int oldCap = (oldTab == null) ? 0 : oldTab.length;
      int oldThr = threshold;
      int newCap, newThr = 0;
      if (oldCap > 0) {
          // 超过最大值就不再扩充了,就只好随你碰撞去吧
          if (oldCap >= MAXIMUM_CAPACITY) {
              threshold = Integer.MAX_VALUE;
             return oldTab;
         }
         // 没超过最大值,就扩充为原来的2倍
         else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                  oldCap >= DEFAULT_INITIAL_CAPACITY)
             newThr = oldThr << 1; // double threshold
     }
     else if (oldThr > 0) // initial capacity was placed in threshold
         newCap = oldThr;
     else {               // zero initial threshold signifies using defaults
         newCap = DEFAULT_INITIAL_CAPACITY;
         newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
     }
     // 计算新的resize上限
     if (newThr == 0) {

         float ft = (float)newCap * loadFactor;
         newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                   (int)ft : Integer.MAX_VALUE);
     }
     threshold = newThr;
     @SuppressWarnings({"rawtypes""unchecked"})
         Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
     table = newTab;
     if (oldTab != null) {
         // 把每个bucket都移动到新的buckets中
         for (int j = 0; j < oldCap; ++j) {
             Node<K,V> e;
             if ((e = oldTab[j]) != null) {
                 oldTab[j] = null;
                 if (e.next == null)
                     newTab[e.hash & (newCap - 1)] = e;
                 else if (e instanceof TreeNode)
                     ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                 else { // 链表优化重hash的代码块
                     Node<K,V> loHead = null, loTail = null;
                     Node<K,V> hiHead = null, hiTail = null;
                     Node<K,V> next;
                     do {
                         next = e.next;
                         // 原索引
                         if ((e.hash & oldCap) == 0) {
                             if (loTail == null)
                                 loHead = e;
                             else
                                 loTail.next = e;
                             loTail = e;
                         }
                         // 原索引+oldCap
                         else {
                             if (hiTail == null)
                                 hiHead = e;
                             else
                                 hiTail.next = e;
                             hiTail = e;
                         }
                     } while ((e = next) != null);
                     // 原索引放到bucket里
                     if (loTail != null) {
                         loTail.next = null;
                         newTab[j] = loHead;
                     }
                     // 原索引+oldCap放到bucket里
                     if (hiTail != null) {
                         hiTail.next = null;
                         newTab[j + oldCap] = hiHead;
                     }
                 }
             }
         }
     }
     return newTab;
}

1.8的扩容优化

Java集合类(八)HashMap1.8

我们在来看一下这张图,经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,

  • 图(a)表示扩容前的key1和key2两种key确定索引位置的示例
  • 图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。

Java集合类(八)HashMap1.8

元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:

Java集合类(八)HashMap1.8

因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算key在数组中的位置,只需要看key的hash值与新数组长度新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:

Java集合类(八)HashMap1.8

这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置。

4.线程安全性

/** * * <p>测试多线程情况hashMap安全性<p> * * Copyright © 2018永乐科技. All rights reserved. * <p>@Title: HashMapInfiniteLoop.java<p> * <p>@Prject: demo <p> * <p>@Package: demo.com.test.collection <p> * <p>@author: keep_trying <p> * <p>@date: 2018年1月4日 下午7:36:40 <p> * <p>@version: V1.0 <p> */
public class HashMapInfiniteLoop {  

    private static HashMap<String,String> map = new HashMap<String,String>(2,0.75f);  
    public static void main(String[] args) {  
        for (int i = 0; i < 20; i++) {
            new Thread("Thread1") {  
                public void run() {  
                    map.put(String.valueOf(Math.random()), String.valueOf(Math.random()));  
                    System.out.println(map);  
                };  
            }.start();  
        }
    }  
}

其中,map初始化为一个长度为2的数组,loadFactor=0.75,threshold=2*0.75=1,也就是说当put第二个key的时候,map就需要进行resize。在resize的过程中出现了循环引用问题。

三、小结

(1) 扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。

(2) 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。

(3) HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap。

(4) JDK1.8引入红黑树大程度优化了HashMap的性能。