Lecturer 咖中咖 Tomaso A. Poggio
三个基本问题:
- Approximation Theory: When and why are deep networks better than shallow networks?
- Optimization: What is the landscape of the empirical risk?
- Learning Theory: How can deep learning not overfit?
Q1:
貌似在说“浅层网络”也会有好表现的可行性。
但浅网络表达能力有限。
Q2,Q3:
稀疏表达(sparse representation)和降维(dimensionality reduction)
一个是subspace,一个是union of subspaces,这就是降维和稀疏表达的本质区别。
When more parameters than data, let's increase the number of training data, training error starts rise from 0, conversely test error continues to decline.