一致性哈希算法(consistent hashing)

时间:2022-10-18 16:47:03

memcache的一致性hash算法使用

http://blog.csdn.net/kongqz/article/details/6695417

一、概述

  1、我们的memcache客户端(这里我看的spymemcache的源码),使用了一致性hash算法ketama进行数据存储节点的选择。与常规的hash算法思路不同,只是对我们要存储数据的key进行hash计算,分配到不同节点存储。一致性hash算法是对我们要存储数据的服务器进行hash计算,进而确认每个key的存储位置。

 2、常规hash算法的应用以及其弊端

    最常规的方式莫过于hash取模的方式。比如集群中可用机器适量为N,那么key值为K的的数据请求很简单的应该路由到hash(K) mod N对应的机器。的确,这种结构是简单的,也是实用的。但是在一些高速发展的web系统中,这样的解决方案仍有些缺陷。随着系统访问压力的增长,缓存系统不得不通过增加机器节点的方式提高集群的相应速度和数据承载量。增加机器意味着按照hash取模的方式,在增加机器节点的这一时刻,大量的缓存命不中,缓存数据需要重新建立,甚至是进行整体的缓存数据迁移,瞬间会给DB带来极高的系统负载,设置导致DB服务器宕机。

  3、设计分布式cache系统时,一致性hash算法可以帮我们解决哪些问题?

   分布式缓存设计核心点:在设计分布式cache系统的时候,我们需要让key的分布均衡,并且在增加cache server后,cache的迁移做到最少。

   这里提到的一致性hash算法ketama的做法是:选择具体的机器节点不在只依赖需要缓存数据的key的hash本身了,而是机器节点本身也进行了hash运算。


二、一致性哈希算法情景描述(转载)

1、 hash机器节点


首先求出机器节点的hash值(怎么算机器节点的hash?ip可以作为hash的参数吧。。当然还有其他的方法了),然后将其分布到0~2^32的一个圆环上(顺时针分布)。如下图所示:
一致性哈希算法(consistent hashing)

图一 

集群中有机器:A , B, C, D, E五台机器,通过一定的hash算法我们将其分布到如上图所示的环上。


2、访问方式

如果有一个写入缓存的请求,其中Key值为K,计算器hash值Hash(K), Hash(K) 对应于图 – 1环中的某一个点,如果该点对应没有映射到具体的某一个机器节点,那么顺时针查找,直到第一次找到有映射机器的节点,该节点就是确定的目标节点,如果超过了2^32仍然找不到节点,则命中第一个机器节点。比如 Hash(K) 的值介于A~B之间,那么命中的机器节点应该是B节点(如上图 )。


3、增加节点的处理

如上图 – 1,在原有集群的基础上欲增加一台机器F,增加过程如下:

计算机器节点的Hash值,将机器映射到环中的一个节点,如下图:
一致性哈希算法(consistent hashing)

图二 

增加机器节点F之后,访问策略不改变,依然按照(2)中的方式访问,此时缓存命不中的情况依然不可避免,不能命中的数据是hash(K)在增加节点以前落在C~F之间的数据。尽管依然存在节点增加带来的命中问题,但是比较传统的 hash取模的方式,一致性hash已经将不命中的数据降到了最低。

 

Consistent Hashing最大限度地抑制了hash键的重新分布。另外要取得比较好的负载均衡的效果,往往在服务器数量比较少的时候需要增加虚拟节点来保证服务器能均匀的分布在圆环上。因为使用一般的hash方法,服务器的映射地点的分布非常不均匀。使用虚拟节点的思想,为每个物理节点(服务器)在圆上分配100~200个点。这样就能抑制分布不均匀,最大限度地减小服务器增减时的缓存重新分布。用户数据映射在虚拟节点上,就表示用户数据真正存储位置是在该虚拟节点代表的实际物理服务器上。
下面有一个图描述了需要为每台物理服务器增加的虚拟节点。


一致性哈希算法(consistent hashing)

图三 

x轴表示的是需要为每台物理服务器扩展的虚拟节点倍数(scale),y轴是实际物理服务器数,可以看出,当物理服务器的数量很小时,需要更大的虚拟节点,反之则需要更少的节点,从图上可以看出,在物理服务器有10台时,差不多需要为每台服务器增加100~200个虚拟节点才能达到真正的负载均衡。

三、以spymemcache源码来演示虚拟节点应用

1、上边描述的一致性Hash算法有个潜在的问题是:
     (1)、将节点hash后会不均匀地分布在环上,这样大量key在寻找节点时,会存在key命中各个节点的概率差别较大,无法实现有效的负载均衡。
     (2)、如有三个节点Node1,Node2,Node3,分布在环上时三个节点挨的很近,落在环上的key寻找节点时,大量key顺时针总是分配给Node2,而其它两个节点被找到的概率都会很小。

2、这种问题的解决方案可以有:
     改善Hash算法,均匀分配各节点到环上;[引文]使用虚拟节点的思想,为每个物理节点(服务器)在圆上分配100~200个点。这样就能抑制分布不均匀,最大限度地减小服务器增减时的缓存重新分布。用户数据映射在虚拟节点上,就表示用户数据真正存储位置是在该虚拟节点代表的实际物理服务器上。

在查看Spy Memcached client时,发现它采用一种称为Ketama的Hash算法,以虚拟节点的思想,解决Memcached的分布式问题。 

3、源码说明

该client采用TreeMap存储所有节点,模拟一个环形的逻辑关系。在这个环中,节点之前是存在顺序关系的,所以TreeMap的key必须实现Comparator接口。
那节点是怎样放入这个环中的呢?

   [html] view plaincopy
  1.    protected void setKetamaNodes(List<MemcachedNode> nodes) {  
  2. TreeMap<Long, MemcachedNode> newNodeMap = new TreeMap<Long, MemcachedNode>();  
  3. int numRepsconfig.getNodeRepetitions();  
  4. for(MemcachedNode node : nodes) {  
  5.     // Ketama does some special work with md5 where it reuses chunks.  
  6.     if(hashAlg == HashAlgorithm.KETAMA_HASH) {  
  7.         for(int i=0; i<numReps / 4; i++) {  
  8.             byte[] digest=HashAlgorithm.computeMd5(config.getKeyForNode(node, i));  
  9.             for(int h=0;h<4;h++) {  
  10.                 Long k = ((long)(digest[3+h*4]&0xFF) << 24)  
  11.                     | ((long)(digest[2+h*4]&0xFF) << 16)  
  12.                     | ((long)(digest[1+h*4]&0xFF) << 8)  
  13.                     | (digest[h*4]&0xFF);  
  14.                 newNodeMap.put(k, node);  
  15.                 getLogger().debug("Adding node %s in position %d", node, k);  
  16.             }  
  17.   
  18.         }  
  19.     } else {  
  20.         for(int i=0; i<numReps; i++) {  
  21.             newNodeMap.put(hashAlg.hash(config.getKeyForNode(node, i)), node);  
  22.         }  
  23.     }  
  24. }  
  25. assert newNodeMap.size() == numReps * nodes.size();  
  26. ketamaNodes = newNodeMap;  


上面的流程大概可以这样归纳:四个虚拟结点为一组,以getKeyForNode方法得到这组虚拟节点的name,Md5编码后,每个虚拟结点对应Md5码16个字节中的4个,组成一个long型数值,做为这个虚拟结点在环中的惟一key。第10行k为什么是Long型的呢?就是因为Long型实现了Comparator接口。

处理完正式结点在环上的分布后,可以开始key在环上寻找节点的游戏了。
对于每个key还是得完成上面的步骤:计算出Md5,根据Md5的字节数组,通过Kemata Hash算法得到key在这个环中的位置。

[html] view plaincopy
  1. MemcachedNode getNodeForKey(long hash) {  
  2.     final MemcachedNode rv;  
  3.     if(!ketamaNodes.containsKey(hash)) {  
  4.         // Java 1.6 adds a ceilingKey method, but I'm still stuck in 1.5  
  5.         // in a lot of places, so I'm doing this myself.  
  6.         SortedMap<Long, MemcachedNode> tailMap=getKetamaNodes().tailMap(hash);  
  7.         if(tailMap.isEmpty()) {  
  8.             hash=getKetamaNodes().firstKey();  
  9.         } else {  
  10.             hash=tailMap.firstKey();  
  11.         }  
  12.     }  
  13.     rv=getKetamaNodes().get(hash);  
  14.     return rv;  
  15. }  

 上边代码的实现就是在环上顺时针查找,没找到就去的第一个,然后就知道对应的物理节点了。

四、应用场景分析

1、memcache的add方法:通过一致性hash算法确认当前客户端对应的cacheserver的hash值以及要存储数据key的hash进行对应,确认cacheserver,获取connection进行数据存储

2、memcache的get方法:通过一致性hash算法确认当前客户端对应的cacheserver的hash值以及要提取数据的hash值,进而确认存储的cacheserver,获取connection进行数据提取

五、总结

1、一致性hash算法只是帮我们减少cache集群中的机器数量增减的时候,cache的数据能进行最少重建。只要cache集群的server数量有变化,必然产生数据命中的问题

2、对于数据的分布均衡问题,通过虚拟节点的思想来达到均衡分配。当然,我们cache server节点越少就越需要虚拟节点这个方式来均衡负载。

3、我们的cache客户端根本不会维护一个map来记录每个key存储在哪里,都是通过key的hash和cacheserver(也许ip可以作为参数)的hash计算当前的key应该存储在哪个节点上。

4、当我们的cache节点崩溃了。我们必定丢失部分cache数据,并且要根据活着的cache server和key进行新的一致性匹配计算。有可能对部分没有丢失的数据也要做重建...

5、至于正常到达数据存储节点,如何找到key对应的数据,那就是cache server本身的内部算法实现了,此处不做描述。


这里只是针对数据的存储方式以及提取方式进行了流程展示。










每天进步一点点——五分钟理解一致性哈希算法(consistent hashing)

转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179     一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用。      一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:
1、平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。
2、单调性(Monotonicity):单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。 
3、分散性(Spread):在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。 
4、负载(Load):负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同 的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。

    在分布式集群中,对机器的添加删除,或者机器故障后自动脱离集群这些操作是分布式集群管理最基本的功能。如果采用常用的hash(object)%N算法,那么在有机器添加或者删除后,很多原有的数据就无法找到了,这样严重的违反了单调性原则。接下来主要讲解一下一致性哈希算法是如何设计的:
环形Hash空间 按照常用的hash算法来将对应的key哈希到一个具有2^32次方个桶的空间中,即0~(2^32)-1的数字空间中。现在我们可以将这些数字头尾相连,想象成一个闭合的环形。如下图                                                                          一致性哈希算法(consistent hashing) 把数据通过一定的hash算法处理后映射到环上现在我们将object1、object2、object3、object4四个对象通过特定的Hash函数计算出对应的key值,然后散列到Hash环上。如下图:    Hash(object1) = key1;    Hash(object2) = key2;    Hash(object3) = key3;    Hash(object4) = key4;                                                           一致性哈希算法(consistent hashing)
将机器通过hash算法映射到环上在采用一致性哈希算法的分布式集群中将新的机器加入,其原理是通过使用与对象存储一样的Hash算法将机器也映射到环中(一般情况下对机器的hash计算是采用机器的IP或者机器唯一的别名作为输入值),然后以顺时针的方向计算,将所有对象存储到离自己最近的机器中。假设现在有NODE1,NODE2,NODE3三台机器,通过Hash算法得到对应的KEY值,映射到环中,其示意图如下:Hash(NODE1) = KEY1;Hash(NODE2) = KEY2;Hash(NODE3) = KEY3;                                                             一致性哈希算法(consistent hashing)
通过上图可以看出对象与机器处于同一哈希空间中,这样按顺时针转动object1存储到了NODE1中,object3存储到了NODE2中,object2、object4存储到了NODE3中。在这样的部署环境中,hash环是不会变更的,因此,通过算出对象的hash值就能快速的定位到对应的机器中,这样就能找到对象真正的存储位置了。
机器的删除与添加普通hash求余算法最为不妥的地方就是在有机器的添加或者删除之后会照成大量的对象存储位置失效,这样就大大的不满足单调性了。下面来分析一下一致性哈希算法是如何处理的。1. 节点(机器)的删除    以上面的分布为例,如果NODE2出现故障被删除了,那么按照顺时针迁移的方法,object3将会被迁移到NODE3中,这样仅仅是object3的映射位置发生了变化,其它的对象没有任何的改动。如下图:                                                              一致性哈希算法(consistent hashing)
2. 节点(机器)的添加     如果往集群中添加一个新的节点NODE4,通过对应的哈希算法得到KEY4,并映射到环中,如下图:                                                              一致性哈希算法(consistent hashing)
    通过按顺时针迁移的规则,那么object2被迁移到了NODE4中,其它对象还保持这原有的存储位置。通过对节点的添加和删除的分析,一致性哈希算法在保持了单调性的同时,还是数据的迁移达到了最小,这样的算法对分布式集群来说是非常合适的,避免了大量数据迁移,减小了服务器的的压力。
平衡性根据上面的图解分析,一致性哈希算法满足了单调性和负载均衡的特性以及一般hash算法的分散性,但这还并不能当做其被广泛应用的原由,因为还缺少了平衡性。下面将分析一致性哈希算法是如何满足平衡性的。hash算法是不保证平衡的,如上面只部署了NODE1和NODE3的情况(NODE2被删除的图),object1存储到了NODE1中,而object2、object3、object4都存储到了NODE3中,这样就照成了非常不平衡的状态。在一致性哈希算法中,为了尽可能的满足平衡性,其引入了虚拟节点。    ——“虚拟节点”( virtual node )是实际节点(机器)在 hash 空间的复制品( replica ),一实际个节点(机器)对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以hash值排列。以上面只部署了NODE1和NODE3的情况(NODE2被删除的图)为例,之前的对象在机器上的分布很不均衡,现在我们以2个副本(复制个数)为例,这样整个hash环中就存在了4个虚拟节点,最后对象映射的关系图如下:                                                                 一致性哈希算法(consistent hashing)
根据上图可知对象的映射关系:object1->NODE1-1,object2->NODE1-2,object3->NODE3-2,object4->NODE3-1。通过虚拟节点的引入,对象的分布就比较均衡了。那么在实际操作中,正真的对象查询是如何工作的呢?对象从hash到虚拟节点到实际节点的转换如下图:                                         一致性哈希算法(consistent hashing)
“虚拟节点”的hash计算可以采用对应节点的IP地址加数字后缀的方式。例如假设NODE1的IP地址为192.168.1.100。引入“虚拟节点”前,计算 cache A 的 hash 值:Hash(“192.168.1.100”);引入“虚拟节点”后,计算“虚拟节”点NODE1-1和NODE1-2的hash值:Hash(“192.168.1.100#1”); // NODE1-1Hash(“192.168.1.100#2”); // NODE1-2
参考:[1] http://blog.huanghao.me/?p=14