树型关系的数据表
不少程序员在进行数据库设计的时候都遇到过树型关系的数据,例如常见的类别表,即一个大类,下面有若干个子类,某些子类又有子类这样的情况。当类别不确定,用户希望可以在任意类别下添加新的子类,或者删除某个类别和其下的所有子类,而且预计以后其数量会逐步增长,此时我们就会考虑用一个数据表来保存这些数据。按照教科书上的教导,第二类程序员大概会设计出类似这样的数据表结构:
类别表_1(Type_table_1)
名称 类型 约束条件 说明
type_id int 无重复 类别标识,主键
type_name char(50) 不允许为空 类型名称,不允许重复
type_father int 不允许为空 该类别的父类别标识,如果是顶节点的话设定为某个唯一值
这样的设计短小精悍,完全满足3NF,而且可以满足用户的所有要求。是不是这样就行呢?答案是NO!Why?
我们来估计一下用户希望如何罗列出这个表的数据的。对用户而言,他当然期望按他所设定的层次关系一次罗列出所有的类别,例如这样:
总类别
类别1
类别1.1
类别1.1.1
类别1.2
类别2
类别2.1
类别3
类别3.1
类别3.2
……
看看为了实现这样的列表显示(树的先序遍历),要对上面的表进行多少次检索?注意,尽管类别1.1.1可能是在类别3.2之后添加的记录,答案仍然是N次。这样的效率对于少量的数据没什么影响,但是日后类型扩充到数十条甚至上百条记录后,单单列一次类型就要检索数十次该表,整个程序的运行效率就不敢恭维了。或许第二类程序员会说,那我再建一个临时数组或临时表,专门保存类型表的先序遍历结果,这样只在第一次运行时检索数十次,再次罗列所有的类型关系时就直接读那个临时数组或临时表就行了。其实,用不着再去分配一块新的内存来保存这些数据,只要对数据表进行一定的扩充,再对添加类型的数量进行一下约束就行了,要完成上面的列表只需一次检索就行了。下面是扩充后的数据表结构:
类别表_2(Type_table_2)
名称 类型 约束条件 说明
type_id int 无重复 类别标识,主键
type_name char(50) 不允许为空 类型名称,不允许重复
type_father int 不允许为空 该类别的父类别标识,如果是顶节点的话设定为某个唯一值
type_layer char(6) 限定3层,初始值为000000 类别的先序遍历,主要为减少检索数据库的次数
按照这样的表结构,我们来看看上面例子记录在表中的数据是怎样的:
type_id type_name type_father type_layer
1 总类别 0 000000
2 类别1 1 010000
3 类别1.1 2 010100
4 类别1.2 2 010200
5 类别2 1 020000
6 类别2.1 5 020100
7 类别3 1 030000
8 类别3.1 7 030100
9 类别3.2 7 030200
10 类别1.1.1 3 010101
……
现在按type_layer的大小来检索一下:SELECT * FROM Type_table_2 ORDER BY type_layer
列出记录集如下:
type_id type_name type_father type_layer
1 总类别 0 000000
2 类别1 1 010000
3 类别1.1 2 010100
10 类别1.1.1 3 010101
4 类别1.2 2 010200
5 类别2 1 020000
6 类别2.1 5 020100
7 类别3 1 030000
8 类别3.1 7 030100
9 类别3.2 7 030200
……
现在列出的记录顺序正好是先序遍历的结果。在控制显示类别的层次时,只要对type_layer字段中的数值进行判断,每2位一组,如大于0则向右移2个空格。当然,我这个例子中设定的限制条件是最多3层,每层最多可设99个子类别,只要按用户的需求情况修改一下type_layer的长度和位数,即可更改限制层数和子类别数。其实,上面的设计不单单只在类别表中用到,网上某些可按树型列表显示的论坛程序大多采用类似的设计。
或许有人认为,Type_table_2中的type_father字段是冗余数据,可以除去。如果这样,在插入、删除某个类别的时候,就得对type_layer 的内容进行比较繁琐的判定,所以我并没有消去type_father字段,这也正符合数据库设计中适当保留冗余数据的来降低程序复杂度的原则,后面我会举一个故意增加数据冗余的案例。