hadoop 的MapReduce原理和学习心得

时间:2021-12-12 16:27:42

mapreduce是hadoop的核心组成,是专门用于数据计算。主要掌握 map、reduce 函数的特点、如何写函数。

我的开发环境是在eclipse,运行程序的时候经常会出现 java 内存不足的情况,需要修改ecplise的jdk使用自己安装的JDK就行。

对于 Hadoop 的 map 函数和 reduce 函数,处理的数据是键值对,也就是说 map 函数接收的数据是键值对,两个参数;输出的也是键值对,两个参数;reduce 函数接收的数和输出的结果也是键值对。我们要做的就是覆盖hadoop的map函数和reduce函数。

mapreduce的执行过程

MapReduce 运行的时候,会通过 Mapper 运行的任务读取 HDFS 中的数据文件,然后调用自己的方法,处理数据,最后输出。Reducer 任务会接收 Mapper 任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到 HDFS 的文件中。

    Mapper任务的执行过程
每个 Mapper 任务是一个 java 进程,它会读取 HDFS 中的文件,解析成很多的键值对,经过我们覆盖的 map 方法处理后, 转换为很多的键值对再输出

把 Mapper 任务的运行过程分为六个阶段。
第一阶段是把输入文件按照一定的标准分片(InputSplit),每个输入片的大小是固定的。
第二阶段是对输入片中的记录按照一定的规则解析成键值对。
第三阶段是调用 Mapper 类中的 map 方法。
第四阶段是按照一定的规则对第三阶段输出的键值对进行分区。
第五阶段是对每个分区中的键值对进行排序。
第六阶段是对数据进行归约处理,也就是 reduce 处理。键相等的键值对会调用一次reduce 方法。经过这一阶段,数据量会减少。归约后的数据输出到本地的 linxu 文件中。

    Reducer任务的执行过程
每个 Reducer 任务是一个 java 进程。Reducer 任务接收 Mapper 任务的输出,归约处理后写入到 HDFS 中。

可以分为3个阶段
第一阶段是 Reducer 任务会主动从 Mapper 任务复制其输出的键值对。 Mapper 任务可能会有很多,因此 Reducer 会复制多个 Mapper 的输出。
第二阶段是把复制到 Reducer 本地数据,全部进行合并,即把分散的数据合并成一个大的数据。再对合并后的数据排序。
第三阶段是对排序后的键值对调用 reduce 方法。 键相等的键值对调用一次 reduce 方法,每次调用会产生零个或者多个键值对。最后把这些输出的键值对写入到 HDFS 文件中。
在整个 MapReduce 程序的开发过程中,我们最大的工作量是覆盖 map 函数和覆盖reduce 函数。

------------------------------------------------------------------------------------------------------------------------------------

最近整了很长一段时间才了解了map reduce的工作原理,shuffle是mapreduce的心脏,了解了这个过程,有助于编写效率更高的mapreduce程序和hadoop调优。自己画了一幅流程图(点击查看全图):

hadoop 的MapReduce原理和学习心得



另外,还找到一篇文章,很好,引用一下。

Hadoop

Apache 下的一个项目,由HDFSMapReduceHBaseHive ZooKeeper等成员组成。其中,HDFS MapReduce 是两个最基础最重要的成员。

HDFSGoogle GFS 的开源版本,一个高度容错的分布式文件系统,它能够提供高吞吐量的数据访问,适合存储海量(PB 级)的大文件(通常超过64M),其原理如下图所示:

 

hadoop 的MapReduce原理和学习心得

采用Master/Slave 结构。NameNode 维护集群内的元数据,对外提供创建、打开、删除和重命名文件或目录的功能。DatanNode 存储数据,并提负责处理数据的读写请求。DataNode定期向NameNode 上报心跳,NameNode 通过响应心跳来控制DataNode

 

InfoWordMapReduce 评为2009 年十大新兴技术的冠军。MapReduce 是大规模数据TB 级)计算的利器,Map Reduce 是它的主要思想,来源于函数式编程语言,它的原理如下图所示:Map负责将数据打散,Reduce负责对数据进行聚集,用户只需要实现map reduce 两个接口,即可完成TB级数据的计算,常见的应用包括:日志分析和数据挖掘等数据分析应用。另外,还可用于科学数据计算,如圆周率PI 的计算等。Hadoop MapReduce的实现也采用Master/Slave 结构。Master 叫做JobTracker,而Slave 叫做TaskTracker用户提交的计算叫做Job,每一个Job会被划分成若干个TasksJobTracker负责Job Tasks 的调度,而TaskTracker负责执行Tasks

 

hadoop 的MapReduce原理和学习心得

 

 

MapReduce中的ShuffleSort分析

MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据。第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Scheme,ML 等。MapReduce 框架的核心步骤主要分两部分:Map 和Reduce。当你向MapReduce 框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map 任务,然后分配到不同的节点上去执行,每一个Map 任务处理输入数据中的一部分,当Map 任务完成后,它会生成一些中间文件,这些中间文件将会作为Reduce 任务的输入数据。Reduce 任务的主要目标就是把前面若干个Map 的输出汇总到一起并输出。从高层抽象来看,MapReduce的数据流图如图1 所示:

 

hadoop 的MapReduce原理和学习心得

本文的重点是剖析MapReduce的核心过程----Shuffle和Sort。在本文中,Shuffle是指从Map产生输出开始,包括系统执行排序以及传送Map输出到Reducer作为输入的过程。在这里我们将去探究Shuffle是如何工作的,因为对基础的理解有助于对MapReduce程序进行调优。

 

首先从Map端开始分析,当Map开始产生输出的时候,他并不是简单的把数据写到磁盘,因为频繁的操作会导致性能严重下降,他的处理更加复杂,数据首先是写到内存中的一个缓冲区,并作一些预排序,以提升效率,如图:

hadoop 的MapReduce原理和学习心得

每个Map任务都有一个用来写入输出数据的循环内存缓冲区,这个缓冲区默认大小是100M,可以通过io.sort.mb属性来设置具体的大小,当缓冲区中的数据量达到一个特定的阀值(io.sort.mb io.sort.spill.percent,其中io.sort.spill.percent 默认是0.80)时,系统将会启动一个后台线程把缓冲区中的内容spill 到磁盘。在spill过程中,Map的输出将会继续写入到缓冲区,但如果缓冲区已经满了,Map就会被阻塞直道spill完成。spill线程在把缓冲区的数据写到磁盘前,会对他进行一个二次排序,首先根据数据所属的partition排序,然后每个partition中再按Key排序。输出包括一个索引文件和数据文件,如果设定了Combiner,将在排序输出的基础上进行。Combiner就是一个Mini Reducer,它在执行Map任务的节点本身运行,先对Map的输出作一次简单的Reduce,使得Map的输出更紧凑,更少的数据会被写入磁盘和传送到Reducer。Spill文件保存在由mapred.local.dir指定的目录中,Map任务结束后删除。

每当内存中的数据达到spill阀值的时候,都会产生一个新的spill文件,所以在Map任务写完他的最后一个输出记录的时候,可能会有多个spill文件,在Map任务完成前,所有的spill文件将会被归并排序为一个索引文件和数据文件。如图3 所示。这是一个多路归并过程,最大归并路数由io.sort.factor 控制(默认是10)。如果设定了Combiner,并且spill文件的数量至少是3(由min.num.spills.for.combine 属性控制),那么Combiner 将在输出文件被写入磁盘前运行以压缩数据。

hadoop 的MapReduce原理和学习心得

对写入到磁盘的数据进行压缩(这种压缩同Combiner 的压缩不一样)通常是一个很好的方法,因为这样做使得数据写入磁盘的速度更快,节省磁盘空间,并减少需要传送到Reducer 的数据量。默认输出是不被压缩的, 但可以很简单的设置mapred.compress.map.output为true 启用该功能。压缩所使用的库由mapred.map.output.compression.codec来设定

 

当spill 文件归并完毕后,Map 将删除所有的临时spill 文件,并告知TaskTracker 任务已完成。Reducers 通过HTTP 来获取对应的数据。用来传输partitions 数据的工作线程个数由tasktracker.http.threads 控制,这个设定是针对每一个TaskTracker 的,并不是单个Map,默认值为40,在运行大作业的大集群上可以增大以提升数据传输速率。

 

现在让我们转到Shuffle的Reduce部分。Map的输出文件放置在运行Map任务的TaskTracker的本地磁盘上(注意:Map输出总是写到本地磁盘,但是Reduce输出不是,一般是写到HDFS),它是运行Reduce任务的TaskTracker所需要的输入数据。Reduce任务的输入数据分布在集群内的多个Map任务的输出中,Map任务可能会在不同的时间内完成,只要有其中一个Map任务完成,Reduce任务就开始拷贝他的输出。这个阶段称为拷贝阶段,Reduce任务拥有多个拷贝线程,可以并行的获取Map输出。可以通过设定mapred.reduce.parallel.copies来改变线程数。

Reduce是怎么知道从哪些TaskTrackers中获取Map的输出呢?当Map任务完成之后,会通知他们的父TaskTracker,告知状态更新,然后TaskTracker再转告JobTracker,这些通知信息是通过心跳通信机制传输的,因此针对以一个特定的作业,jobtracker知道Map输出与tasktrackers的映射关系。Reducer中有一个线程会间歇的向JobTracker询问Map输出的地址,直到把所有的数据都取到。在Reducer取走了Map输出之后,TaskTracker不会立即删除这些数据,因为Reducer可能会失败,他们会在整个作业完成之后,JobTracker告知他们要删除的时候才去删除。

如果Map输出足够小,他们会被拷贝到Reduce TaskTracker的内存中(缓冲区的大小由mapred.job.shuffle.input.buffer.percnet控制),或者达到了Map输出的阀值的大小(由mapred.inmem.merge.threshold控制),缓冲区中的数据将会被归并然后spill到磁盘。

拷贝来的数据叠加在磁盘上,有一个后台线程会将它们归并为更大的排序文件,这样做节省了后期归并的时间。对于经过压缩的Map 输出,系统会自动把它们解压到内存方便对其执行归并。

当所有的Map 输出都被拷贝后,Reduce 任务进入排序阶段(更恰当的说应该是归并阶段,因为排序在Map 端就已经完成),这个阶段会对所有的Map 输出进行归并排序,这个工作会重复多次才能完成。

 

假设这里有50 个Map 输出(可能有保存在内存中的),并且归并因子是10(由io.sort.factor控制,就像Map 端的merge 一样),那最终需要5 次归并。每次归并会把10个文件归并为一个,最终生成5 个中间文件。在这一步之后,系统不再把5 个中间文件归并成一个,而是排序后直接“喂”给Reduce 函数,省去向磁盘写数据这一步。最终归并的数据可以是混合数据,既有内存上的也有磁盘上的。由于归并的目的是归并最少的文件数目,使得在最后一次归并时总文件个数达到归并因子的数目,所以每次操作所涉及的文件个数在实际中会更微妙些。譬如,如果有40 个文件,并不是每次都归并10 个最终得到4 个文件,相反第一次只归并4 个文件,然后再实现三次归并,每次10 个,最终得到4 个归并好的文件和6 个未归并的文件。要注意,这种做法并没有改变归并的次数,只是最小化写入磁盘的数据优化措施,因为最后一次归并的数据总是直接送到Reduce 函数那里。在Reduce 阶段,Reduce 函数会作用在排序输出的每一个key 上。这个阶段的输出被直接写到输出文件系统,一般是HDFS。在HDFS 中,因为TaskTracker 节点也运行着一个DataNode 进程,所以第一个块备份会直接写到本地磁盘。到此,MapReduce 的Shuffle 和Sort 分析完毕。




转载:http://blog.csdn.net/thomas0yang/article/details/8562910

     http://blog.csdn.net/wuzhilon88/article/details/17484757