[抄题]:
Given a binary tree containing digits from 0-9
only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3
which represents the number 123
.
Find the total sum of all root-to-leaf numbers.
Note: A leaf is a node with no children.
Example:
Input: [1,2,3]
1
/ \
2 3
Output: 25
Explanation:
The root-to-leaf path1->2
represents the number12
.
The root-to-leaf path1->3
represents the number13
.
Therefore, sum = 12 + 13 =25
.
Example 2:
Input: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
Output: 1026
Explanation:
The root-to-leaf path4->9->5
represents the number 495.
The root-to-leaf path4->9->1
represents the number 491.
The root-to-leaf path4->0
represents the number 40.
Therefore, sum = 495 + 491 + 40 =1026
.
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
dfs的参数写错:sum由于经常要操作 而且需要返回,所以放在里面不用拿出来。
左右dfs的前提是root.l/r非空,空了就返回。所以空不空是一个重要的判断条件。
[英文数据结构或算法,为什么不用别的数据结构或算法]:
[一句话思路]:
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
- sum = 0必须写在dfs里,每次重置为0。不然每次dfs会出现重复加的毛病。
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
sum由于经常要操作 而且需要返回,所以放在里面不用拿出来。
[复杂度]:Time complexity: O(n) Space complexity: O(n)
[算法思想:迭代/递归/分治/贪心]:
[关键模板化代码]:
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
[是否头一次写此类driver funcion的代码] :
[潜台词] :
class Solution {
public int sumNumbers(TreeNode root) {
//corner case
if (root == null) return 0;
//return
return dfs(root, 0);
} public int dfs(TreeNode root, int cur) {
//exit if left and right are null
if (root.left == null && root.right == null) return cur * 10 + root.val; //if not null, go left / right
int sum = 0;
if (root.left != null) sum += dfs(root.left, cur * 10 + root.val);
if (root.right != null) sum += dfs(root.right, cur * 10 + root.val); //return
return sum;
}
}