A1086. Tree Traversals Again

时间:2022-01-17 08:47:13

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.

A1086. Tree Traversals Again
Figure 1

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.

Output Specification:

For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:

6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop

Sample Output:

3 4 2 6 5 1
 #include<cstdio>
#include<iostream>
#include<stack>
#include<string.h>
using namespace std;
typedef struct NODE{
NODE* left, *right;
int data;
}node;
stack<int> stk;
int pre[], in[], N;
node* create(int preL, int preR, int inL, int inR){
if(preL > preR){
return NULL;
}
node *root = new node;
root->data = pre[preL];
int i;
for(i = inL; i <= inR; i++)
if(in[i] == root->data)
break;
int Lnum = i - inL;
root->left = create(preL + , preL + Lnum, inL, i - );
root->right = create(preL + Lnum + , preR, i + , inR);
return root;
}
void post(node *tree, int &cnt){
if(tree == NULL)
return;
post(tree->left, cnt);
post(tree->right, cnt);
if(cnt == N - )
printf("%d", tree->data);
else{
printf("%d ", tree->data);
cnt++;
}
} int main(){
int num, indexPre = , indexIn = ;
char str[];
scanf("%d", &N);
for(int i = ; i < *N; i++){
scanf("%s", str);
if(strcmp(str, "Push") == ){
scanf("%d ", &num);
stk.push(num);
pre[indexPre++] = num;
}else{
num = stk.top();
stk.pop();
in[indexIn++] = num;
}
}
node *tree = create(, N - , , N - );
int cnt = ;
post(tree, cnt);
cin >> N;
return ;
}

总结:

1、中序遍历的非递归实现:不断将非空的左孩子入栈,当左边为空时,弹出一个栈顶元素访问之,并将指针移至他的右子树,继续进行开始时的操作。 在这个过程中,push的特点是不断把遇到的新节点push入栈,因此push的过程就是先序遍历的过程。而pop自然是中序的过程。因此,中序与先序的非递归实现的区别就在于访问节点的时机不同,先序在push时,中序在pop时

2、因此可以根据题目同时建立一个栈,同步做push和pop操作,先得到先序与中序遍历序列,再按照套路建树。