题目链接:http://poj.org/problem?id=1986
Description
Input
* Line 2+M: A single integer, K. 1 <= K <= 10,000
* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.
Output
Sample Input
7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6
Sample Output
13
3
36
Hint
题意:
输入第1~M+1行,与POJ 1984相同,代表了农场地图。
然后再一行有一个整数K代表询问数,
再然后有K个询问u和v之间最短距离。
题解:
本题的输入确定了农场地图是一棵树,并且本题不需要知道农场之间的位置关系,所以不需要记录东西南北。
树上两点间的最短距离,有两种情况:
①u是v的祖先,则dist(u,v) = dist(root,v) - dist(root,u)
②u不是v的祖先,那么从u到v必然要经过LCA(u,v),显然就是最短路径,则dist(u,v) = dist(root,u) - dist(root,LCA(u,v)) + dist(root,v) - dist(root,LCA(u,v))
不难发现,第①种情况下,dist(root,LCA(u,v)) = dist(root,u),那么①和②就可以统一为:dist(u,v) = dist(root,u) + dist(root,v) - 2 * dist(root,LCA(u,v))
所以我们只要计算出每个节点和树根的距离,求出所有查询(u,v)的LCA(u,v),就能得到dist(u,v)。
AC代码:
#include<cstdio>
#include<vector>
using namespace std; const int maxn=+; //节点数
const int maxm=+; //边数
const int maxq=+; //查询数 int par[maxn];
int find(int x){return (par[x]==x)?x:(par[x]=find(par[x]));} struct Edge{
int u,v,w;
Edge(int u=,int v=,int w=){this->u=u,this->v=v,this->w=w;}
};
vector<Edge> E;
vector<int> Ge[maxn];
void addedge(int u,int v,int w)
{
E.push_back(Edge(u,v,w));
Ge[u].push_back(E.size()-);
} struct Query{
int u,v;
int lca;
Query(int u=,int v=,int lca=){this->u=u,this->v=v,this->lca=lca;}
};
vector<Query> Q;
vector<int> Gq[maxn];
void addquery(int u,int v)
{
Q.push_back(Query(u,v));
Gq[u].push_back(Q.size()-);
} bool vis[maxn];
int dist[maxn];
void LCA(int u,int d)
{
par[u]=u; //建立以u为代表元素的集合
vis[u]=;
dist[u]=d;
for(int i=;i<Ge[u].size();i++)
{
Edge &e=E[Ge[u][i]]; int v=e.v;
if(!vis[v])
{
LCA(v,d+e.w);
par[v]=u; //将v的集合并入u的集合
}
}
for(int i=;i<Gq[u].size();i++)
{
Query &q=Q[Gq[u][i]]; int v=q.v;
if(vis[v])
{
q.lca=find(v);
Q[Gq[u][i]^].lca=q.lca;
}
}
} int m,n,k;
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int u,v,w; char d[];
scanf("%d%d%d%s",&u,&v,&w,d);
addedge(u,v,w);
addedge(v,u,w);
} scanf("%d",&k);
for(int i=;i<=k;i++)
{
int u,v;
scanf("%d%d",&u,&v);
addquery(u,v);
addquery(v,u);
} LCA(,); for(int i=;i<=k;i++)
{
printf("%d\n",dist[Q[(i-)*].u]+dist[Q[(i-)*].v]-*dist[Q[(i-)*].lca]);
}
}