GAN改进五大方向

时间:2022-04-11 15:36:55

Improved GAN (NIPS-2016 workshop):

该工作主要给出了5条有助于GAN稳定训练的经验:

  • (1) 特征匹配:让生成器产生的样本与真实样本在判别器中间层的响应一致,即使判别器从真实数据和生成数据中提取的特征一致,而不是在判别器网络的最后一层才做判断,有助于提高模型的稳定性;其实验也表明在一些常规方法训练GAN不稳定的情况中,若用特征匹配则可以有效避免这种不稳定;

  • (2) Minibatch Discrimination:在判别器中,不再每次对每一个生成数据与真实数据的差异性进行比较,而是一次比较一批生成数据与真实数据的差异性。这种做法提高了模型的鲁棒性,可以缓解生成器输出全部相似或相同的问题;

  • (3) Historical Averaging:受fictitious play的游戏算法启发,作者提出在生成器和判别器的目标函数中各加一个对参数的约束项

GAN改进五大方向

其中θ[i]表示在时刻i的模型参数,该操作可以在一些情况下帮助模型达到模型的平衡点;

  • (4) 单边标签平滑 (One-sided Label Smoothing):当向GAN中引入标签数据时,最好是将常规的0、1取值的二值标签替换为如0.1,0.9之类的平滑标签,可以增加网络的抗干扰能力;但这里之所以说单边平滑,是因为假设生成数据为0.1而非0的话会使判别器的最优判别函数的形状发生变化,会使生成器偏向于产生相似的输出,因此对于取值0的标签保持不变,不用0.1一类的小数据替换,即为单边标签平滑;

  • (5) Virtual Batch Normalization:VBN相当于是BN的进阶版,BN是一次对一批数据进行归一化,这样的一个副作用是当“批”的大小不同时,BN操作之后的归一化常量会引起训练过程的波动,甚至超过输入信号z的影响(因z是随机噪声);而VBN通过引入一个参考集合,每次将当下的数据x加入参考集合构建一个新的虚拟的batch,然后在这个虚拟的batch上进行归一化,如此可以缓解原始BN操作所引起的波动问题。