Rikka with Sequence
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2777 Accepted Submission(s): 503
Yuta has an array A with n numbers. Then he makes m operations on it.
There are three type of operations:
1 l r x : For each i in [l,r], change A[i] to A[i]+x
2 l r : For each i in [l,r], change A[i] to ⌊A−−√[i]⌋
3 l r : Yuta wants Rikka to sum up A[i] for all i in [l,r]
It is too difficult for Rikka. Can you help her?
For each testcase, the first line contains two numbers n,m(1<=n,m<=100000). The second line contains n numbers A[1]~A[n]. Then m lines follow, each line describe an operation.
It is guaranteed that 1<=A[i],x<=100000.
5 5
1 2 3 4 5
1 3 5 2
2 1 4
3 2 4
2 3 5
3 1 5
6
【分析】这个题唯一的难点就是开根号,有两个地方没有想到,想到了就会写了。首先,对于一个数,开根号可以转化成减号,详细肩带吗。其次,对于一个区间,如果最大值==最小值,那么所有的值开完根号都相等了,还有种就就是最大值-最小值==1的时候,可能存在开完根号后差值还是一,这个时候需要特判。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int BufferSize=<<;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=,f=;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-;
for(;isdigit(c);c=Getchar()) x=x*+c-'';
return x*f;
}
const int N=1e5+;
ll sum[N<<],lz[N<<],mx[N<<],mn[N<<];
void pushUp(int rt){
sum[rt]=sum[rt<<]+sum[rt<<|];
mx[rt]=max(mx[rt<<],mx[rt<<|]);
mn[rt]=min(mn[rt<<],mn[rt<<|]);
}
void build(int rt,int l,int r){
lz[rt]=;
if(l==r){sum[rt]=read();mn[rt]=mx[rt]=sum[rt];return;}
int mid=l+r>>;
build(rt<<,l,mid);build(rt<<|,mid+,r);
pushUp(rt);
}
void pushDown(int rt,int l,int r){
if(lz[rt]!=){
int mid=l+r>>;
lz[rt<<]+=lz[rt];
lz[rt<<|]+=lz[rt];
mn[rt<<]+=lz[rt];
mx[rt<<]+=lz[rt];
mx[rt<<|]+=lz[rt];
mn[rt<<|]+=lz[rt];
sum[rt<<]+=lz[rt]*(mid-l+);
sum[rt<<|]+=lz[rt]*(r-mid);
lz[rt]=;
}
}
int x,y,t,T,n,m;
void sqrtUpdate(int rt,int l,int r){
if(x<=l&&r<=y){
if(mx[rt]==mn[rt]){
lz[rt]-=mx[rt];
mx[rt]=sqrt(mx[rt]);
mn[rt]=mx[rt];
lz[rt]+=mx[rt];
sum[rt]=mx[rt]*(r-l+);
return;
}
else if(mx[rt]==mn[rt]+){
ll x1=sqrt(mx[rt]);
ll x2=sqrt(mn[rt]);
if(x1==x2+){
lz[rt]-=(mx[rt]-x1);
sum[rt]-=(mx[rt]-x1)*(r-l+);
mx[rt]=x1;mn[rt]=x2;
return;
}
}
}
int mid=l+r>>;
pushDown(rt,l,r);
if(x<=mid)sqrtUpdate(rt<<,l,mid);
if(y>mid)sqrtUpdate(rt<<|,mid+,r);
pushUp(rt);
}
void addUpdate(int rt,int l,int r){
if(x<=l&&r<=y){
lz[rt]+=t;
sum[rt]+=1ll*(r-l+)*t;
mx[rt]+=t;mn[rt]+=t;
return ;
}
int mid=l+r>>;
pushDown(rt,l,r);
if(x<=mid)addUpdate(rt<<,l,mid);
if(y>mid)addUpdate(rt<<|,mid+,r);
pushUp(rt);
}
ll query(int rt,int l,int r){
if(x<=l&&r<=y)return sum[rt];
int mid=l+r>>;
pushDown(rt,l,r);
ll ret=;
if(x<=mid)ret+=query(rt<<,l,mid);
if(y>mid)ret+=query(rt<<|,mid+,r);
return ret;
}
int main(){
T=read();
while(T--){
n=read();m=read();
build(,,n);
while(m--){
int op;
op=read();x=read();y=read();
if(op==){
t=read();addUpdate(,,n);
}
else if(op==)sqrtUpdate(,,n);
else printf("%I64d\n",query(,,n));
}
}
return ;
}