json和pickle
用于序列化的两个模块
- json 用于字符串和python数据类型间进行转换,json只支持列表,字典这样简单的数据类型 但是它不支持类,函数这样的数据类型转换
- pickle 它支持所有数据类型 这就是pickle和json的区别,它可以对复杂数据类型做操作,缺点是仅适用于python
Json模块提供了四个功能:dumps、dump、loads、load
dumps&loads
import json #dumps和loads只是在内存中转换 dic={'k1':'v1'} dic1=json.dumps(dic) #将python的基本数据类型转换成字符串形式 print(type(dic)) print(type(dic1)) s1='{"k2":"v2"}' dic2=json.loads(s1) #将python的字符串形式转换成基本数据类型 print(type(s1)) print(type(dic2))
dump&load
''' json.dump() 具有写文件和读文件的功能 json.load() ''' li=[11,22,33] json.dump(li,open('db','w')) ret=json.load(open('db','r')) print(ret,type(ret))
pickle模块提供了四个功能:dumps、dump、loads、load
dumps&loads
import pickle li=[11,22,33] ret=pickle.dumps(li) print(ret) #打印出来的结果是字节码b'\x80\x03]q\x00(K\x0bK\x16K!e.' result=pickle.loads(ret) print(result)
#pickle支持类,函数这样复杂数据类型的操作 class foo(): def __init__(self): pass f=foo() ret2=pickle.dumps(f) print(ret2) ret3=pickle.loads(ret2) print(ret3)
dump&load
import pickle li=[11,22,33] pickle.dump(li,open('db1','wb')) #写入文件 ret1=pickle.load(open('db1','rb')) print(ret1)
requests模块
import requests import json wether=requests.get('http://wthrcdn.etouch.cn/weather_mini?city=深圳') wether.encodeing='utf8' #字节编码 print(type(wether.text)) #.text获取文件 dict=json.loads(wether.text) #字符串转换成字典 print(type(dict))
软件目录结构规范
设计好目录结构用途:
- 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。
- 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增加,项目结构不会混乱,仍然能够组织良好。
目录组织方式
关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在*的这个问题上,能看到大家对Python目录结构的讨论。
Foo/
|-- bin/
| |-- foo
|
|-- foo/
| |-- tests/
| | |-- __init__.py
| | |-- test_main.py
| |
| |-- __init__.py
| |-- main.py
|
|-- docs/
| |-- conf.py
| |-- abc.rst
|
|-- setup.py
|-- requirements.txt
|-- README
简要解释一下:
-
bin/
: 存放项目的一些可执行文件,当然你可以起名script/
之类的也行。 -
foo/
: 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/
存放单元测试代码; (3) 程序的入口最好命名为main.py
。 -
docs/
: 存放一些文档。 -
setup.py
: 安装、部署、打包的脚本。 -
requirements.txt
: 存放软件依赖的外部Python包列表。 -
README
: 项目说明文件。
除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt
,ChangeLog.txt
文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章。
下面,再简单讲一下我对这些目录的理解和个人要求吧。
关于README的内容
这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。
它需要说明以下几个事项:
- 软件定位,软件的基本功能。
- 运行代码的方法: 安装环境、启动命令等。
- 简要的使用说明。
- 代码目录结构说明,更详细点可以说明软件的基本原理。
- 常见问题说明。
我觉得有以上几点是比较好的一个README
。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。
可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。
关于requirements.txt和setup.py
setup.py
一般来说,用setup.py
来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。
这个我是踩过坑的。
我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:
- 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
- Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
- 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
- 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。
setup.py
可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。
setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py
当然,简单点自己写个安装脚本(deploy.sh
)替代setup.py
也未尝不可。
requirements.txt
这个文件存在的目的是:
- 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在
setup.py
安装依赖时漏掉软件包。 - 方便读者明确项目使用了哪些Python包。
这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10
这种格式,要求是这个格式能被pip
识别,这样就可以简单的通过 pip install -r requirements.txt
来把所有Python包依赖都装好了。具体格式说明: 点这里。
关于配置文件的使用方法
注意,在上面的目录结构中,没有将conf.py
放在源码目录下,而是放在docs/
目录下。
很多项目对配置文件的使用做法是:
- 配置文件写在一个或多个python文件中,比如此处的conf.py。
- 项目中哪个模块用到这个配置文件就直接通过
import conf
这种形式来在代码中使用配置。
这种做法我不太赞同:
- 这让单元测试变得困难(因为模块内部依赖了外部配置)
- 另一方面配置文件作为用户控制程序的接口,应当可以由用户*指定该文件的路径。
- 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖
conf.py
这个文件。
所以,我认为配置的使用,更好的方式是,
- 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
- 程序的配置也是可以灵活控制的。
能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以*的指定用户配置。
所以,不应当在代码中直接import conf
来使用配置文件。上面目录结构中的conf.py
,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py
启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py
你可以换个类似的名字,比如settings.py
。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml
之类的。