kafka C客户端librdkafka producer源码分析

时间:2024-08-11 14:36:20

简介

kafka网站上提供了C语言的客户端librdkafka,地址在这

librdkafka是使用C语言根据apache kafka 协议实现的客户端。另外这个客户端还有简单的c++接口。客户端作者对这个客户端比较上心,经常会修改bug并提交新功能。

librdkafka的基本原理和我之前博客说的java版producer类似,一个线程向队列中加数据,另一个线程通过非阻塞的方式从队列中取出数据,并写入到broker。

源码分析

源码包含两个文件夹src和src-cpp

kafka C客户端librdkafka producer源码分析 kafka C客户端librdkafka producer源码分析

src是用c实现的源码,而src-cpp是在c接口上包装的一层c++类,实现了基本的功能。

代码运行流程如下

1、rd_kafka_conf_set设置全局配置

2、rd_kafka_topic_conf_set设置topic配置

3、rd_kafka_brokers_add设置broker地址,启动向broker发送消息的线程

4、rd_kafka_new启动kafka主线程

5、rd_kafka_topic_new建topic

6、rd_kafka_produce使用本函数发送消息

7、rd_kafka_poll调用回调函数

还是看发送一条消息的过程

入队列过程

调用rd_kafka_produce可以将消息写到队列

1 int rd_kafka_produce (...) {
2 //调用rd_kafka_msg_new
3 return rd_kafka_msg_new(...);
4 }
首先先将消息包装成rd_kafka_msg_t类型,然后获取分区并相应的队列
kafka C客户端librdkafka producer源码分析
1 int rd_kafka_msg_new (...) {
2 ...
3 //创建消息,将传入的参数转换为rkm
4 rkm = rd_kafka_msg_new0(...);
5 //分区并入队
6 err = rd_kafka_msg_partitioner(rkt, rkm, 1);
7 ...
8 return -1;
9 }
kafka C客户端librdkafka producer源码分析
kafka C客户端librdkafka producer源码分析
 1 int rd_kafka_msg_partitioner (...) {
2 ...
3 //获取分区号
4 switch (rkt->rkt_state)
5 {
6 ...
7 }
8 //获取分区
9 rktp_new = rd_kafka_toppar_get(rkt, partition, 0);
10 ...
11 //加入队列
12 rd_kafka_toppar_enq_msg(rktp_new, rkm);
13 return 0;
14 }
kafka C客户端librdkafka producer源码分析

出队列过程

添加broker的过程中就启动了扫描队列的操作

kafka C客户端librdkafka producer源码分析
 1 static rd_kafka_broker_t *rd_kafka_broker_add (rd_kafka_t *rk,
2 rd_kafka_confsource_t source,
3 const char *name, uint16_t port,
4 int32_t nodeid) {
5 ...
6 pthread_attr_init(&attr);
7 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
8 //启动向broker发送消息的主线程
9 if ((err = pthread_create(&rkb->rkb_thread, &attr,
10 rd_kafka_broker_thread_main, rkb))) {
11 ...
12 return NULL;
13 }
14 //将broker加到broker队列中
15 TAILQ_INSERT_TAIL(&rkb->rkb_rk->rk_brokers, rkb, rkb_link);
16 (void)rd_atomic_add(&rkb->rkb_rk->rk_broker_cnt, 1);
17 ...
18 return rkb;
19 }
kafka C客户端librdkafka producer源码分析

启动rd_kafka_broker_thread_main主线程

kafka C客户端librdkafka producer源码分析
 1 static void *rd_kafka_broker_thread_main (void *arg) {
2 ...
3 while (!rkb->rkb_rk->rk_terminate) {
4 switch (rkb->rkb_state)
5 {
6 //如果broker连接未初始化,或中断,则不断重连broker
7 case RD_KAFKA_BROKER_STATE_INIT:
8 case RD_KAFKA_BROKER_STATE_DOWN:
9 if (rd_kafka_broker_connect(rkb) == -1) {
10 ...
11 }
12 break;
13 //如果broker连接已经建立,则调用serve函数
14 case RD_KAFKA_BROKER_STATE_UP:
15 if (rkb->rkb_nodeid == RD_KAFKA_NODEID_UA)
16 rd_kafka_broker_ua_idle(rkb);
17 else if (rk->rk_type == RD_KAFKA_PRODUCER)
18 rd_kafka_broker_producer_serve(rkb);
19 else if (rk->rk_type == RD_KAFKA_CONSUMER)
20 rd_kafka_broker_consumer_serve(rkb);
21 break;
22 }
23 }
24 ...
25 return NULL;
26 }
kafka C客户端librdkafka producer源码分析

只看producer的处理函数,该函数扫描消息并发送

kafka C客户端librdkafka producer源码分析
 1 static void rd_kafka_broker_producer_serve (rd_kafka_broker_t *rkb) {
2 ...
3 while (!rkb->rkb_rk->rk_terminate &&
4 rkb->rkb_state == RD_KAFKA_BROKER_STATE_UP) {
5 ...
6 do {
7 cnt = 0;
8 ...
9 //扫描所有的topic-partitions,并发送消息
10 TAILQ_FOREACH(rktp, &rkb->rkb_toppars, rktp_rkblink) {
11 ...
12 //将入队过程中的队列rktp_msgq加到rktp_xmit_msgq中
13 if (rktp->rktp_msgq.rkmq_msg_cnt > 0)
14 rd_kafka_msgq_concat(&rktp->
15 rktp_xmit_msgq,
16 &rktp->rktp_msgq);
17 rd_kafka_toppar_unlock(rktp);
18 //扫描消息队列中数据是否超时
19 if (unlikely(do_timeout_scan))
20 rd_kafka_msgq_age_scan(&rktp->
21 rktp_xmit_msgq,
22 &timedout,
23 now);
24 //队列为空则从头继续
25 if (rktp->rktp_xmit_msgq.rkmq_msg_cnt == 0)
26 continue;
27
28 //如果没有超时,或者没达到处理消息数量的阈值,则从头继续,这样批处理可以提高性能
29 if (rktp->rktp_ts_last_xmit +
30 (rkb->rkb_rk->rk_conf.
31 buffering_max_ms * 1000) > now &&
32 rktp->rktp_xmit_msgq.rkmq_msg_cnt <
33 rkb->rkb_rk->rk_conf.
34 batch_num_messages) {
35 /* Wait for more messages */
36 continue;
37 }
38
39 rktp->rktp_ts_last_xmit = now;
40
41 //按协议转换并填充数据到rkb中
42 while (rktp->rktp_xmit_msgq.rkmq_msg_cnt > 0) {
43 int r = rd_kafka_broker_produce_toppar(
44 rkb, rktp);
45 if (likely(r > 0))
46 cnt += r;
47 else
48 break;
49 }
50 }
51
52 } while (cnt);
53
54 //触发数据发送情况的回调函数,将发送失败的写到一个操作结果队列中
55 if (unlikely(isrfailed.rkmq_msg_cnt > 0))
56 rd_kafka_dr_msgq(rkb->rkb_rk, &isrfailed,
57 RD_KAFKA_RESP_ERR__ISR_INSUFF);
58
59 if (unlikely(timedout.rkmq_msg_cnt > 0))
60 rd_kafka_dr_msgq(rkb->rkb_rk, &timedout,
61 RD_KAFKA_RESP_ERR__MSG_TIMED_OUT);
62
63 rd_kafka_broker_toppars_unlock(rkb);
64
65 /* Check and move retry buffers */
66 if (unlikely(rkb->rkb_retrybufs.rkbq_cnt) > 0)
67 rd_kafka_broker_retry_bufs_move(rkb);
68
69 rd_kafka_broker_unlock(rkb);
70
71 //开始在网络上发送数据
72 rd_kafka_broker_io_serve(rkb);
73
74 /* Scan wait-response queue
75 * Note: 'now' may be a bit outdated by now. */
76 if (do_timeout_scan)
77 rd_kafka_broker_waitresp_timeout_scan(rkb, now);
78
79 rd_kafka_broker_lock(rkb);
80 }
81
82 rd_kafka_broker_unlock(rkb);
83 }
kafka C客户端librdkafka producer源码分析
通过poll处理网络事件,将消息从网络发送到broker
kafka C客户端librdkafka producer源码分析
 1 static void rd_kafka_broker_io_serve (rd_kafka_broker_t *rkb) {
2 rd_kafka_op_t *rko;
3 rd_ts_t now = rd_clock();
4 //处理broker操作
5 if (unlikely(rd_kafka_q_len(&rkb->rkb_ops) > 0))
6 while ((rko = rd_kafka_q_pop(&rkb->rkb_ops, RD_POLL_NOWAIT)))
7 rd_kafka_broker_op_serve(rkb, rko);
8 //请求metadata
9 if (unlikely(now >= rkb->rkb_ts_metadata_poll))
10 rd_kafka_broker_metadata_req(rkb, 1 /* all topics */, NULL,
11 NULL, "periodic refresh");
12 //如果有消息,手动增加写事件
13 if (rkb->rkb_outbufs.rkbq_cnt > 0)
14 rkb->rkb_pfd.events |= POLLOUT;
15 else
16 rkb->rkb_pfd.events &= ~POLLOUT;
17 if (poll(&rkb->rkb_pfd, 1,
18 rkb->rkb_rk->rk_conf.buffering_max_ms) <= 0)
19 return;
20 //poll函数,处理各种事件,发送消息时,只处理写事件,当请求metadata时,处理读事件
21 if (rkb->rkb_pfd.revents & POLLIN)
22 while (rd_kafka_recv(rkb) > 0)
23 ;
24 if (rkb->rkb_pfd.revents & POLLHUP)
25 return rd_kafka_broker_fail(rkb, RD_KAFKA_RESP_ERR__TRANSPORT,
26 "Connection closed");
27 if (rkb->rkb_pfd.revents & POLLOUT)
28 while (rd_kafka_send(rkb) > 0)
29 ;
30 }
kafka C客户端librdkafka producer源码分析

问题

librdkafka不像java客户端那样,可以通过future.get()实现同步发送。所以,如果broker不能连通的话,send方法还是可以正常将消息放入队列。这会导致两个问题

1、我们的客户端是不会知道broker已经挂掉了,因而不能对这种情况作出及时处理,导致消息全部堆积在内存中,如果此时不幸,我们的客户端也挂掉了,那这部分消息就全部丢失了。

2、如果broker一直没有恢复,而我们一直向队列中写数据的话,producer中有一个选项message.timeout.ms,如果超过了设定的消息超时时间,那么会有线程清理队列中的数据,导致消息丢失,而如果将时间设置为0(永不超时)的话,将导致客户端内存撑满。

上面这个问题可以通过如下方法实现的同步发送来解决

kafka C客户端librdkafka producer源码分析
 1 void dr_cb (...err, , void *msg_opaque) {
2 int *produce_statusp = (int *)msg_opaque;
3
4 /* set sync_produce()'s produce_status value to the error code (which can be NO_ERROR) */
5 *produce_statusp = err;
6 }
7
8 int sync_produce (rkt, msg..) {
9 int produce_status = -100000; /* or some other magic value that is not proper value in rd_kafka_resp_err_t */
10
11 rd_kafka_produce(rkt, ..msg, .., &produce_status /* msg_opaque */);
12
13 do {
14 /* poll dr and error callbacks. */
15 rd_kafka_poll(rk, 1000);
16 /* wait for dr_cb to be called and setting produce_status to the error value. */
17 } while (produce_status == -100000);
18
19 if (produce_status == RD_KAFKA_RESP_ERR_NO_ERROR)
20 return SUCCESS!;
21 else
22 return FAILURE;
23 }
kafka C客户端librdkafka producer源码分析