这DP虽然简单
但是思考一下还是挺好的
题意是
1,2,3,4....k 用加法凑成N
每个数可取不限个数
令dp[i][j] 表示前i种数凑成j的方案数
然后dp[i][j] = dp[i - 1][j] + dp[i - 1][j - i] + dp[i - 1][j - 2 * i]........dp[i - 1][j - k * i]
这样子
然后代码如下,由于结果要爆long long ,所以用两个long long 数存高位和低位
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define MAXN 111111
#define INF 1000000007
using namespace std;
pair<long long, long long> dp[111][1111];
long long mod = 10000000000000000LL;
int n, m;
int main()
{
scanf("%d%d", &n, &m);
dp[0][0].second = 1;
dp[0][0].first = 0;
for(int i = 1; i <= m; i++)
{
for(int j = 0; j <= n; j++)
for(int k = j; k >= 0; k -= i)
{
dp[i][j].first += dp[i - 1][k].first;
dp[i][j].second += dp[i - 1][k].second;
if(dp[i][j].second >= mod)
{
dp[i][j].first += dp[i][j].second / mod;
dp[i][j].second %= mod;
}
}
}
if(dp[m][n].first > 0)
printf("%I64d%I64d\n", dp[m][n].first, dp[m][n].second);
else printf("%I64d\n", dp[m][n].second);
return 0;
}
然后就是优化一下
dp[i][j] = dp[i - 1][j] + dp[i - 1][j - i] + dp[i - 1][j - 2 * i]........dp[i - 1][j - k * i]
其实可以发现
dp[i][j - k * i] 与dp[i][j - (k - 1)i] 之间是可以转移的
无非是多用了一个i而已
那么优化成了dp[i][j] = dp[i - 1][j] + dp[i][j - i]
dp[i - 1][j] 代表的是前i-1种数凑成j的方案数
dp[i][j - i]代表的是是用了前i种数凑成j - i的方案数
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define MAXN 111111
#define INF 1000000007
using namespace std;
pair<long long, long long> dp[111][1111];
long long mod = 10000000000000000LL;
int n, m;
int main()
{
scanf("%d%d", &n, &m);
dp[0][0].second = 1;
dp[0][0].first = 0;
for(int i = 1; i <= m; i++)
{
for(int j = 0; j <= n; j++)
{
dp[i][j] = dp[i - 1][j];
if(j - i < 0) continue;
dp[i][j].first += dp[i][j - i].first ;
dp[i][j].second += dp[i][j - i].second;
if(dp[i][j].second >= mod)
{
dp[i][j].first += dp[i][j].second / mod;
dp[i][j].second %= mod;
}
}
}
if(dp[m][n].first > 0)
printf("%I64d%I64d\n", dp[m][n].first, dp[m][n].second);
else printf("%I64d\n", dp[m][n].second);
return 0;
}
然后还能优化的就是空间了
观察转移方程
dp[i][j] = dp[i - 1][j] + dp[i][j - i]
发现只跟i和i-1有关系
并且和i - 1有关系得时候跟j没关系
也就是可以用一个一维的状态转移方程就行了
dp[j] = dp[j] + dp[j - i]
其中dp[i - 1][j]实际上在i - 1 循环后已经隐含的转移到了dp[i][j]中了
也就是dp[j]
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define MAXN 111111
#define INF 1000000007
using namespace std;
pair<long long, long long> dp[1111];
long long mod = 10000000000000000LL;
int n, m;
int main()
{
scanf("%d%d", &n, &m);
dp[0].second = 1;
dp[0].first = 0;
for(int i = 1; i <= m; i++)
{
for(int j = 1; j <= n; j++)
{
if(j - i < 0) continue;
dp[j].first += dp[j - i].first ;
dp[j].second += dp[j - i].second;
if(dp[j].second >= mod)
{
dp[j].first += dp[j].second / mod;
dp[j].second %= mod;
}
}
}
if(dp[n].first > 0)
printf("%I64d%I64d\n", dp[n].first, dp[n].second);
else printf("%I64d\n", dp[n].second);
return 0;
}