1146. Maximum Sum
Time limit: 0.5 second
Memory limit: 64 MB
Memory limit: 64 MB
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1 × 1 or greater located within the whole array.
As an example, the maximal sub-rectangle of the array:
0 | −2 | −7 | 0 |
9 | 2 | −6 | 2 |
−4 | 1 | −4 | 1 |
−1 | 8 | 0 | −2 |
is in the lower-left-hand corner and has the sum of 15.
Input
The input consists of an N × N array of integers. The input begins with a single positive integerN on a line by itself indicating the size of the square two dimensional array. This is followed byN 2 integers separated by white-space (newlines and spaces). These N 2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [−127, 127].
Output
The output is the sum of the maximal sub-rectangle.
Sample
input | output |
---|---|
4 |
15 |
Difficulty: 97
题意:求最大的子矩阵
分析:很经典的题。
知道最大子段和的做法。
然后枚举矩阵的上下界,按照最大子段和的做法做。
/**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
int n, arr[N][N];
int sum[N][N], p[N]; inline void Input()
{
scanf("%d", &n);
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++) scanf("%d", &arr[i][j]);
} inline int Work(int *arr)
{
int ret = arr[], cnt = arr[];
for(int i = ; i <= n; i++)
{
if(cnt < ) cnt = arr[i];
else cnt += arr[i];
ret = max(ret, cnt);
}
return ret;
} inline void Solve()
{
int ans = -INF;
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
sum[i][j] = sum[i - ][j] + arr[i][j];
for(int i = ; i <= n; i++)
for(int j = i; j <= n; j++)
{
for(int k = ; k <= n; k++)
p[k] = sum[j][k] - sum[i - ][k];
int cnt = Work(p);
/*if(ans < cnt)
{
ans = cnt;
printf("%d %d %d\n", ans, i, j);
}*/
ans = max(ans, cnt);
} cout << ans << endl;
} int main()
{
freopen("a.in", "r", stdin);
Input();
Solve();
return ;
}