Java性能漫谈-数组复制之System.arraycopy

时间:2023-03-08 15:52:37

当我还年幼的时候,我很任性,复制数组也是,写一个for循环,来回倒腾,后来长大了,就发现了System.arraycopy的好处。

为了测试俩者的区别我写了一个简单赋值int[100000]的程序来对比,并且中间使用了nanoTime来计算时间差:

程序如下:

        int[] a = new int[100000];
for(int i=0;i<a.length;i++){
a[i] = i;
} int[] b = new int[100000]; int[] c = new int[100000];
for(int i=0;i<c.length;i++){
c[i] = i;
} int[] d = new int[100000]; for(int k=0;k<10;k++){
long start1 = System.nanoTime();
for(int i=0;i<a.length;i++){
b[i] = a[i];
}
long end1 = System.nanoTime();
System.out.println("end1 - start1 = "+(end1-start1)); long start2 = System.nanoTime();
System.arraycopy(c, 0, d, 0, 100000);
long end2 = System.nanoTime();
System.out.println("end2 - start2 = "+(end2-start2)); System.out.println();
}

为了避免内存不稳定干扰和运行的偶然性结果,我在一开始的时候把所有空间申明完成,并且只之后循环10次执行,得到如下结果:

end1 - start1 = 366806
end2 - start2 = 109154 end1 - start1 = 380529
end2 - start2 = 79849 end1 - start1 = 421422
end2 - start2 = 68769 end1 - start1 = 344463
end2 - start2 = 72020 end1 - start1 = 333174
end2 - start2 = 77277 end1 - start1 = 377335
end2 - start2 = 82285 end1 - start1 = 370608
end2 - start2 = 66937 end1 - start1 = 349067
end2 - start2 = 86532 end1 - start1 = 389974
end2 - start2 = 83362 end1 - start1 = 347937
end2 - start2 = 63638

可以看出,System.arraycopy的性能很不错,为了看看究竟这个底层是如何处理的,我找到openJDK的一些代码留恋了一些:

System.arraycopy是一个native函数,需要看native层的代码:

    public static native void arraycopy(Object src,  int  srcPos,
Object dest, int destPos,
int length);

找到对应的openjdk6-src/hotspot/src/share/vm/prims/jvm.cpp,这里有JVM_ArrayCopy的入口:

JVM_ENTRY(void, JVM_ArrayCopy(JNIEnv *env, jclass ignored, jobject src, jint src_pos,
jobject dst, jint dst_pos, jint length))
JVMWrapper("JVM_ArrayCopy");
// Check if we have null pointers
if (src == NULL || dst == NULL) {
THROW(vmSymbols::java_lang_NullPointerException());
}
arrayOop s = arrayOop(JNIHandles::resolve_non_null(src));
arrayOop d = arrayOop(JNIHandles::resolve_non_null(dst));
assert(s->is_oop(), "JVM_ArrayCopy: src not an oop");
assert(d->is_oop(), "JVM_ArrayCopy: dst not an oop");
// Do copy
Klass::cast(s->klass())->copy_array(s, src_pos, d, dst_pos, length, thread);
JVM_END

前面的语句都是判断,知道最后的copy_array(s, src_pos, d, dst_pos, length, thread)是真正的copy,进一步看这里,在openjdk6-src/hotspot/src/share/vm/oops/typeArrayKlass.cpp中:

void typeArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
assert(s->is_typeArray(), "must be type array"); // Check destination
if (!d->is_typeArray() || element_type() != typeArrayKlass::cast(d->klass())->element_type()) {
THROW(vmSymbols::java_lang_ArrayStoreException());
} // Check is all offsets and lengths are non negative
if (src_pos < || dst_pos < || length < ) {
THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
}
// Check if the ranges are valid
if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())
|| (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {
THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
}
// Check zero copy
if (length == )
return; // This is an attempt to make the copy_array fast.
int l2es = log2_element_size();
int ihs = array_header_in_bytes() / wordSize;
char* src = (char*) ((oop*)s + ihs) + ((size_t)src_pos << l2es);
char* dst = (char*) ((oop*)d + ihs) + ((size_t)dst_pos << l2es);
Copy::conjoint_memory_atomic(src, dst, (size_t)length << l2es);//还是在这里处理copy
}

这个函数之前的仍然是一堆判断,直到最后一句才是真实的拷贝语句。

在openjdk6-src/hotspot/src/share/vm/utilities/copy.cpp中找到对应的函数:

// Copy bytes; larger units are filled atomically if everything is aligned.
void Copy::conjoint_memory_atomic(void* from, void* to, size_t size) {
address src = (address) from;
address dst = (address) to;
uintptr_t bits = (uintptr_t) src | (uintptr_t) dst | (uintptr_t) size; // (Note: We could improve performance by ignoring the low bits of size,
// and putting a short cleanup loop after each bulk copy loop.
// There are plenty of other ways to make this faster also,
// and it's a slippery slope. For now, let's keep this code simple
// since the simplicity helps clarify the atomicity semantics of
// this operation. There are also CPU-specific assembly versions
// which may or may not want to include such optimizations.) if (bits % sizeof(jlong) == ) {
Copy::conjoint_jlongs_atomic((jlong*) src, (jlong*) dst, size / sizeof(jlong));
} else if (bits % sizeof(jint) == ) {
Copy::conjoint_jints_atomic((jint*) src, (jint*) dst, size / sizeof(jint));
} else if (bits % sizeof(jshort) == ) {
Copy::conjoint_jshorts_atomic((jshort*) src, (jshort*) dst, size / sizeof(jshort));
} else {
// Not aligned, so no need to be atomic.
Copy::conjoint_jbytes((void*) src, (void*) dst, size);
}
}

上面的代码展示了选择哪个copy函数,我们选择conjoint_jints_atomic,在openjdk6-src/hotspot/src/share/vm/utilities/copy.hpp进一步查看:

// jints,                 conjoint, atomic on each jint
static void conjoint_jints_atomic(jint* from, jint* to, size_t count) {
assert_params_ok(from, to, LogBytesPerInt);
pd_conjoint_jints_atomic(from, to, count);
}

继续向下查看,在openjdk6-src/hotspot/src/cpu/zero/vm/copy_zero.hpp中:

static void pd_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
_Copy_conjoint_jints_atomic(from, to, count);
}

继续向下查看,在openjdk6-src/hotspot/src/os_cpu/linux_zero/vm/os_linux_zero.cpp中:

void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
if (from > to) {
jint *end = from + count;
while (from < end)
*(to++) = *(from++);
}
else if (from < to) {
jint *end = from;
from += count - ;
to += count - ;
while (from >= end)
*(to--) = *(from--);
}
}

可以看到,直接就是内存块赋值的逻辑了,这样避免很多引用来回倒腾的时间,必然就变快了。