这题放上来是因为自己第一回见到这种题,觉得它好玩儿 =)
Trapping Rain Water
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
class Solution {
public:
int trap(int A[], int n) {
}
};
题目不难,观察下就可以发现被水填满后的形状是先升后降的塔形,因此,先遍历一遍找到塔顶,然后分别从两边开始,往塔顶所在位置遍历,水位只会增高不会减小,且一直和最近遇到的最大高度持平,这样知道了实时水位,就可以边遍历边计算面积。
从看题目开始一共十分钟,算本菜鸟在AC率二字打头的题目中至今最快的一次。。
class Solution {
public:
int trap(int A[], int n) {
if(n <= ) return ;
int max = -, maxInd = ;
int i = ;
for(; i < n; ++i){
if(A[i] > max){
max = A[i];
maxInd = i;
}
}
int area = , root = A[];
for(i = ; i < maxInd; ++i){
if(root < A[i]) root = A[i];
else area += (root - A[i]);
}
for(i = n-, root = A[n-]; i > maxInd; --i){
if(root < A[i]) root = A[i];
else area += (root - A[i]);
}
return area;
}
};
总结:
这道题和LeetCode上 "Candy" 一题都采用了定义两个指针向中部某一点靠拢的做法(当然Candy还有更快的解,见以前的这篇),这也算是小技巧之一吧,在需要时要能第一时间想到。