HDU 5795 || 3032
把x个石子的堆分成非空两(i, j)或三堆(i, j, k)的操作->(sg[i] ^ sg[j])或(sg[i] ^ sg[j] ^ sg[k])是x的后继
#define pron "hdu5795"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int maxn = ; int sg[maxn + ];
bool vis[maxn + ]; int mex(){
for (int i = ; i <= maxn; i ++)
if (not vis[i])
return i;
} int get_sg(int x){
if (sg[x] != -)
return sg[x]; memset(vis, false, sizeof vis); for (int i = ; i < x; i ++){
int temp = get_sg(i);
vis[temp] = true; for (int j = ; j < x - i; j ++)
vis[temp ^ get_sg(j) ^ get_sg(x - i - j)] = true;
} return sg[x] = mex();
} int get_sg(int x){
if (x % == )
return x - ;
if (x % == )
return x + ;
return x;
} int main(){
#ifndef online_judge
freopen(pron ".in", "r", stdin);
#endif
int tcase, n, flag, temp; scanf("%d", &tcase);
while (tcase --){
flag = ; scanf("%d", &n);
for (int i = ; i < n; i ++){
scanf("%d", &temp);
flag ^= get_sg(temp);
} if (flag)
puts("first player wins.");
else
puts("second player wins.");
}
}
5795
#define PRON "hdu3032"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int MAXN = ; bool vis[MAXN + ];
int sg[MAXN + ]; int mex(){
for (int i = ; i <= MAXN; i ++)
if (not vis[i])
return i;
} int get_sg(int x){
if (sg[x] != -)
return sg[x]; memset(vis, false, sizeof vis); int temp;
for (int i = ; i < x; i ++){
temp = get_sg(i);
vis[temp] = vis[temp ^ get_sg(x - i)] = true;
} return sg[x] = mex();
} int get_SG(int x){
if (x % == )
return x - ;
if (x % == )
return x + ;
return x;
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif
memset(sg, -, sizeof sg); int Tcase, n, temp, flag; scanf("%d", &Tcase);
while (Tcase --){
flag = ; scanf("%d", &n);
while (n --){
scanf("%d", &temp);
flag ^= get_SG(temp);
} if (flag)
puts("Alice");
else
puts("Bob");
}
}
3032
HDU 1536 || 1944
直接get_sg,不需要打表找规律
#define PRON "hdu1536"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int MAXK = + ;
const int MAXN = ; bool vis[MAXN + ];
int k, Tcase, n, h, flag, s[MAXK], sg[MAXN + ]; int mex(){
for (int i = ; i <= MAXN; i ++)
if (not vis[i])
return i;
} void get_sg(){
memset(sg, , sizeof sg); for (int i = , j; i <= MAXN; i ++){
memset(vis, false, sizeof vis); j = ;
while (i >= s[j] && j < k)
vis[sg[i - s[j ++]]] = true; sg[i] = mex();
}
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif while (scanf("%d", &k) == && k){
for (int i = ; i < k; i ++)
scanf("%d", &s[i]);
sort(s, s + k); get_sg(); scanf("%d", &Tcase);
while (Tcase --){
flag = ; scanf("%d", &n);
for (int i = ; i < n; i ++){
scanf("%d", &h);
flag ^= sg[h];
} if (flag)
putchar('W');
else
putchar('L');
} putchar();
}
}
1536
Codeforces 768E
取石子,但是对于每一堆,不能取相同的个数。比如这一堆被拿走了x个,下一次就不能再拿x个了。
官方题解用的dp。但这道题可以...
处理一个数组a[i], 表示取完i个石子最多需要的步骤数,即 1 + 2 + .... + a[i] <= i。由于是后手,所以前者采取什么策略我就可以采取什么策略,因此求一个异或和就好。
#define PRON "768e"
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll; const int maxn = ; int n, a[maxn]; int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif memset(a, , sizeof a);
for (int i = , j = ; i <= ; i ++){
while (j * (j + ) / <= i)
++ j; a[i] = -- j;
} scanf("%d", &n);
int flag = , p;
while (n --){
scanf("%d", &p);
flag ^= a[p];
} puts(flag ? "NO" : "YES");
}
768E