Description
有N个正整数,需要从中选出一些数,使这些数的和最大。
若两个数a,b同时满足以下条件,则a,b不能同时被选
1:存在正整数C,使a*a+b*b=c*c
2:gcd(a,b)=1
Input
第一行一个正整数n,表示数的个数。
第二行n个正整数a1,a2,?an。
Output
最大的和。
Sample Input
5
3 4 5 6 7
3 4 5 6 7
Sample Output
22
HINT
n<=3000。
Source
Solution
所以这道题a的数据范围是什么......用long long可以过,不知道int行不行。
嗯,把所有有关系的数字连一条边,这道题就变成了选出一些点使这些点两两没有边相连,求最大点权。这样就变成了最大点权独立集问题。
然后好像这个图一定是二分图,就可以用网络流做了。如果不是二分图就是NP问题了233。
有一个奇怪的定理:最大点权独立集 = 总权值 - 最小点权覆盖集 = 总权值 - 最小割 = 总权值 - 最大流。
好像不只一个定理,怪我咯。
把每个数字拆成两个点,从源点连向一个点,另一个点连向汇点,边权均为数字大小。然后把有关系的点之间连一条边,边权无限大。
跑一遍最大流,答案就是总权值 - 最大流 / 2。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF = ;
struct edge
{
int v, nxt;
ll w;
}e[];
queue<int> Q;
ll d[];
int fst[], etot = , sss, ttt, level[]; void addedge(int u, int v, ll w)
{
e[++etot] = (edge){v, fst[u], w}, fst[u] = etot;
} bool istri(ll a, ll b)
{
ll c = (ll)sqrt(a * a + b * b + 0.1);
return c * c == a * a + b * b;
} ll gcd(ll a, ll b)
{
return b ? gcd(b, a % b) : a;
} int BFS()
{
memset(level, , sizeof(level));
Q.push(sss), level[sss] = ;
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int i = fst[u]; i; i = e[i].nxt)
if(!level[e[i].v] && e[i].w)
Q.push(e[i].v), level[e[i].v] = level[u] + ;
}
return level[ttt];
} ll Dinic(int u, ll lim)
{
ll tmp = lim;
if(u == ttt) return lim;
for(int i = fst[u]; i; i = e[i].nxt)
if(level[e[i].v] == level[u] + && e[i].w)
{
ll flow = Dinic(e[i].v, min(tmp, e[i].w));
e[i].w -= flow, e[i ^ ].w += flow;
if(!(tmp -= flow)) break;
}
if(tmp == lim) level[u] = ;
return lim - tmp;
} int main()
{
int n;
ll ans = ;
cin >> n;
sss = (n << ) + , ttt = (n << ) + ;
for(int i = ; i <= n; i++)
cin >> d[i];
for(int i = ; i <= n; i++)
{
addedge(sss, i, d[i]), addedge(i, sss, );
addedge(i + n, ttt, d[i]), addedge(ttt, i + n, );
}
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
if(istri(d[i], d[j]) && gcd(d[i], d[j]) == )
addedge(i, j + n, INF), addedge(j + n, i, );
while(BFS())
ans += Dinic(sss, INF);
ans = -(ans >> );
for(int i = ; i <= n; i++)
ans += d[i];
cout << ans << endl;
return ;
}