QM5_Didstribution

时间:2024-07-27 08:07:19

QM5_Didstribution

Basic Concepts

Probability distribution

Discrete distribution (离散分布)
  • The distribution of the discrete random variable.
  • Discrete random variable
    • takes on a finite and countable number of possible values.
Continuous distribution (连续分布)
  • The distribution of the continuous random variable.
  • Continuous random variable:
    • takes on an infinite and uncountable number of possible values.

Probability function

Probability function (概率函数)
  • For discrete random variable taking on a specific value
  • p(x) = P(X=x)
    • X: 随机变量; x: a specific value
Probability density function (概率密度函数)
  • For continuous random variables within a range
  • P(x1<X<x2)
  • The probability of taking on an specific value is always zero, P(X=x)=0
  • 因为连续随机变量有无数个数, 即分母为无穷大, 所以取到一个具体的值的概率是0. 这并不代表不可能取到个这值,只是相对于取值范围, 取到该值的可能性太小. 所以对连续随机变量, 研究具体的值没有什么价值, 研究的是range.
Cumulative probability function (累积概率函数)
  • F(x) = P(X<=x)

插入图片, 用面积代表概率.

Dsicrete uniform distribution (离散均匀分布)

  • Definition
    • has a finite number of possible outcomes, all of which are equally likely.
  • Example: X = {1,2,3,4,5}
    • P(1) = P(2) = P(3) = P(4) = P(5) = 20%
    • P(3) = P(1) + P(2) + P(3) = 60%
    • P(2<=X<=4) = P(2) + P(3) + P(4) = 60%

Discrete Distribution

Binomial distribution ** (二项式分布)

Bernoulli random variable (trial,伯努利实验)
  • Random variables with only two outcomes, one represents success(denoted as 1); the other represents failure(denoted as 0). P(X=1) = p, P(X=0) = 1-P.
  • Binomial random variable
    • The number of successes in a Bernoulli trials. (做n次Bernoulli trials就得到二项式分布)
    • The probability of x successes in n trails.

插入老师板书.插入公式.

  • Expected value and variance

插入图片

  • 均值 => 期望值 => 算加权平均
  • 计算器算排列组合: 10个中挑出6个, 10 => 2nd => + ->6 -> =.

Continuous Distribution

Continuous uniform distribution (连续均匀分布)

  • Definition
    • probability of continuous uniform random variable which distribute evenly over an interval.
  • Properties
    • P(X=x)=0
    • P(x1<=X<=x2) = (x2-x1)/(b-a)

Normal distribution *** (正态分布)

  • Properties

    • completely described by mean and variable.
      • 只由两个参数决定 , 均值和方差.
    • 插入公式

    • skewness = 0, kurtosis = 3

    • Linear combination of normally distributed random variables is also normally distributed.
      • 比如x1~n是线性的, x2~n也是线性的, 则3x1+2x2~n也是线性的.
    • Probability descrase further from the mean, but the tails go on forever.
  • 考点

    • 性质
    • 置信区间
    • 标准化
  • Concepts

    • Confidence interval 置信区间
      • 落在区间内的概率, 就是切比雪夫.
    • Confidence level 置信水平
      • 置信水平 = 置信度
    • Confidence degree 置信度
  • Properties

插入图

  • k : 依赖因子(关键值), Reliability factor /Critical value.

  • Standard normal distribution 标准正态分布

    • also named z-distribution
    • X~N (0,1), 正态分布均值是0, 方差是1.
    • Standardization
    • >>>插入公式
    • z值含义
      • 正态分布与标准正态分布位置相对应.
      • 离标准正态分布均值的距离,即z个标准差.
      • 算出z值后,查表(z-table), 查出累计概率.
  • 例题

Shortfall risk **(缺口风险)

  • Definition
    • the risk that portfolio value or return will fall below the imnimum acceptable level(RL)
  • Properties
    • The lower, the better

Safety-first ratio **(第一安全比率)

  • Definition
    • the distance from the mean return to the shortfall elvel in units of standard deviation.
  • Calculation
  • >>>插入公式
  • Properties
  • The higher, the better
  • Minimizing shortfall risk - Maximizing safety-first ratio

Lognormal distribution **

  • Properties

插入图片

Student;s t-distribution ***

  • Properties
    • Defined by single parameter: degree of freedom(df), 由唯一一个参数决定.
      • df = n-1, where: n is the sample size.
    • Symmetrical, skewness = 0,
    • Fatter tails than a normal distribution (低峰肥尾)
    • As df increase t-distribution is approaching to standard normal distribution.
    • Given a degree of confidence, t-distribution has a wider confidence interval than z-distribution.
  • Shape

插图

Simulation (模拟)

插入图片

相关文章