Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
class Solution { public: int numTrees(int n) { int f[n+1]; fill_n(&f[0], n+1, 0); f[0] = 1; for (int i = 1; i <=n; i++) { for (int k = 0; k < i; k++) { f[i] += f[k]*f[i-k-1]; } } return f[n]; } };