Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
class Solution {
public:
int numTrees(int n) {
if (n <= 2) return n;
vector<int>nums(n + 1);
nums[0] = 1;
for (int i = 1; i <= n; ++i ) {
if (i < 3) {
nums[i] = i;
continue;
}
for (int j = 1; j <= i; ++j) {
nums[i] += nums[j - 1] * nums[i - j];
}
}
return nums[n];
}
};