JAVA多线程之CountDownLatch与join的区别

时间:2021-09-12 12:09:43

首先,我们来看一个应用场景1:

假设一条流水线上有三个工作者:worker0,worker1,worker2。有一个任务的完成需要他们三者协作完成,worker2可以开始这个任务的前提是worker0和worker1完成了他们的工作,而worker0和worker1是可以并行他们各自的工作的。

如果我们要编码模拟上面的场景的话,我们大概很容易就会想到可以用join来做。当在当前线程中调用某个线程 thread 的 join() 方法时,当前线程就会阻塞,直到thread 执行完成,当前线程才可以继续往下执行。补充下:join的工作原理是,不停检查thread是否存活,如果存活则让当前线程永远wait,直到thread线程终止,线程的this.notifyAll 就会被调用。

我们首先用join来模拟这个场景:

Worker类如下:

  1. package com.concurrent.test3;
  2. /**
  3. * 工作者类
  4. * @author ThinkPad
  5. *
  6. */
  7. public class Worker extends Thread {
  8. //工作者名
  9. private String name;
  10. //工作时间
  11. private long time;
  12. public Worker(String name, long time) {
  13. this.name = name;
  14. this.time = time;
  15. }
  16. @Override
  17. public void run() {
  18. // TODO 自动生成的方法存根
  19. try {
  20. System.out.println(name+"开始工作");
  21. Thread.sleep(time);
  22. System.out.println(name+"工作完成,耗费时间="+time);
  23. } catch (InterruptedException e) {
  24. // TODO 自动生成的 catch 块
  25. e.printStackTrace();
  26. }
  27. }
  28. }

Test类如下:

  1. package com.concurrent.test3;
  2. public class Test {
  3. public static void main(String[] args) throws InterruptedException {
  4. // TODO 自动生成的方法存根
  5. Worker worker0 = new Worker("worker0", (long) (Math.random()*2000+3000));
  6. Worker worker1 = new Worker("worker1", (long) (Math.random()*2000+3000));
  7. Worker worker2 = new Worker("worker2", (long) (Math.random()*2000+3000));
  8. worker0.start();
  9. worker1.start();
  10. worker0.join();
  11. worker1.join();
  12. System.out.println("准备工作就绪");
  13. worker2.start();
  14. }
  15. }

运行test,观察控制台输出的顺序,我们发现这样可以满足需求,worker2确实是等worker0和worker1完成之后才开始工作的:

worker1开始工作
worker0开始工作
worker1工作完成,耗费时间=3947
worker0工作完成,耗费时间=4738
准备工作就绪
worker2开始工作
worker2工作完成,耗费时间=4513

除了用join外,用CountDownLatch 也可以完成这个需求。需要对worker做一点修改,我把它放在另一个包下:

Worker:

  1. package com.concurrent.test4;
  2. import java.util.concurrent.CountDownLatch;
  3. /**
  4. * 工作者类
  5. * @author ThinkPad
  6. *
  7. */
  8. public class Worker extends Thread {
  9. //工作者名
  10. private String name;
  11. //工作时间
  12. private long time;
  13. private CountDownLatch countDownLatch;
  14. public Worker(String name, long time, CountDownLatch countDownLatch) {
  15. this.name = name;
  16. this.time = time;
  17. this.countDownLatch = countDownLatch;
  18. }
  19. @Override
  20. public void run() {
  21. // TODO 自动生成的方法存根
  22. try {
  23. System.out.println(name+"开始工作");
  24. Thread.sleep(time);
  25. System.out.println(name+"工作完成,耗费时间="+time);
  26. countDownLatch.countDown();
  27. System.out.println("countDownLatch.getCount()="+countDownLatch.getCount());
  28. } catch (InterruptedException e) {
  29. // TODO 自动生成的 catch 块
  30. e.printStackTrace();
  31. }
  32. }
  33. }

Test:

  package com.concurrent.test4;

  1. import java.util.concurrent.CountDownLatch;
  2. public class Test {
  3. public static void main(String[] args) throws InterruptedException {
  4. // TODO 自动生成的方法存根
  5. CountDownLatch countDownLatch = new CountDownLatch(2);
  6. Worker worker0 = new Worker("worker0", (long) (Math.random()*2000+3000), countDownLatch);
  7. Worker worker1 = new Worker("worker1", (long) (Math.random()*2000+3000), countDownLatch);
  8. Worker worker2 = new Worker("worker2", (long) (Math.random()*2000+3000), countDownLatch);
  9. worker0.start();
  10. worker1.start();
  11. countDownLatch.await();
  12. System.out.println("准备工作就绪");
  13. worker2.start();
  14. }
  15. }

我们创建了一个计数器为2的 CountDownLatch ,让Worker持有这个CountDownLatch 实例,当完成自己的工作后,调用countDownLatch.countDown() 方法将计数器减1。countDownLatch.await() 方法会一直阻塞直到计数器为0,主线程才会继续往下执行。观察运行结果,发现这样也是可以的:

worker1开始工作
worker0开始工作
worker0工作完成,耗费时间=3174
countDownLatch.getCount()=1
worker1工作完成,耗费时间=3870
countDownLatch.getCount()=0
准备工作就绪
worker2开始工作
worker2工作完成,耗费时间=3992
countDownLatch.getCount()=0

那么既然如此,CountDownLatch与join的区别在哪里呢?事实上在这里我们只要考虑另一种场景,就可以很清楚地看到它们的不同了。

应用场景2:

假设worker的工作可以分为两个阶段,work2 只需要等待work0和work1完成他们各自工作的第一个阶段之后就可以开始自己的工作了,而不是场景1中的必须等待work0和work1把他们的工作全部完成之后才能开始。

试想下,在这种情况下,join是没办法实现这个场景的,而CountDownLatch却可以,因为它持有一个计数器,只要计数器为0,那么主线程就可以结束阻塞往下执行。我们可以在worker0和worker1完成第一阶段工作之后就把计数器减1即可,这样worker0和worker1在完成第一阶段工作之后,worker2就可以开始工作了。

worker:

  1. package com.concurrent.test5;
  2. import java.util.concurrent.CountDownLatch;
  3. /**
  4. * 工作者类
  5. * @author ThinkPad
  6. *
  7. */
  8. public class Worker extends Thread {
  9. //工作者名
  10. private String name;
  11. //第一阶段工作时间
  12. private long time;
  13. private CountDownLatch countDownLatch;
  14. public Worker(String name, long time, CountDownLatch countDownLatch) {
  15. this.name = name;
  16. this.time = time;
  17. this.countDownLatch = countDownLatch;
  18. }
  19. @Override
  20. public void run() {
  21. // TODO 自动生成的方法存根
  22. try {
  23. System.out.println(name+"开始工作");
  24. Thread.sleep(time);
  25. System.out.println(name+"第一阶段工作完成");
  26. countDownLatch.countDown();
  27. Thread.sleep(2000); //这里就姑且假设第二阶段工作都是要2秒完成
  28. System.out.println(name+"第二阶段工作完成");
  29. System.out.println(name+"工作完成,耗费时间="+(time+2000));
  30. } catch (InterruptedException e) {
  31. // TODO 自动生成的 catch 块
  32. e.printStackTrace();
  33. }
  34. }
  35. }

Test:

  1. package com.concurrent.test5;
  2. import java.util.concurrent.CountDownLatch;
  3. public class Test {
  4. public static void main(String[] args) throws InterruptedException {
  5. // TODO 自动生成的方法存根
  6. CountDownLatch countDownLatch = new CountDownLatch(2);
  7. Worker worker0 = new Worker("worker0", (long) (Math.random()*2000+3000), countDownLatch);
  8. Worker worker1 = new Worker("worker1", (long) (Math.random()*2000+3000), countDownLatch);
  9. Worker worker2 = new Worker("worker2", (long) (Math.random()*2000+3000), countDownLatch);
  10. worker0.start();
  11. worker1.start();
  12. countDownLatch.await();
  13. System.out.println("准备工作就绪");
  14. worker2.start();
  15. }
  16. }

观察控制台打印顺序,可以发现这种方法是可以模拟场景2的:

worker0开始工作
worker1开始工作
worker1第一阶段工作完成
worker0第一阶段工作完成
准备工作就绪
worker2开始工作
worker1第二阶段工作完成
worker1工作完成,耗费时间=5521
worker0第二阶段工作完成
worker0工作完成,耗费时间=6147
worker2第一阶段工作完成
worker2第二阶段工作完成
worker2工作完成,耗费时间=5384

最后,总结下CountDownLatch与join的区别:调用thread.join() 方法必须等thread 执行完毕,当前线程才能继续往下执行,而CountDownLatch通过计数器提供了更灵活的控制,只要检测到计数器为0当前线程就可以往下执行而不用管相应的thread是否执行完毕。

参考:http://*.com/questions/21808814/whats-the-difference-between-cyclicbarrier-countdownlatch-and-join-in-java

JAVA多线程之CountDownLatch与join的区别的更多相关文章

  1. Java多线程之CountDownLatch学习

    给出官网上的例子:http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CountDownLatch.html Java中conc ...

  2. JAVA多线程之CountDownLatch

    前序: 上周测试给开发的同事所开发的模块提出了一个bug,并且还是偶现. 经过仔细查看代码,发现是在业务中启用了多线程,2个线程同时跑,但是新启动的2个线程必须保证一个完成之后另一个再继续运行,才能消 ...

  3. Java多线程之CountDownLatch和CyclicBarrier同步屏障的使用

      转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6558349.html  一:CountDownLatch CountDownLatch是一个执行 完成任务 ...

  4. java多线程之yield,join,wait,sleep的区别

    Java多线程之yield,join,wait,sleep的区别 Java多线程中,经常会遇到yield,join,wait和sleep方法.容易混淆他们的功能及作用.自己仔细研究了下,他们主要的区别 ...

  5. JAVA多线程之wait/notify

    本文主要学习JAVA多线程中的 wait()方法 与 notify()/notifyAll()方法的用法. ①wait() 与 notify/notifyAll 方法必须在同步代码块中使用 ②wait ...

  6. Java多线程之ConcurrentSkipListMap深入分析(转)

    Java多线程之ConcurrentSkipListMap深入分析   一.前言 concurrentHashMap与ConcurrentSkipListMap性能测试 在4线程1.6万数据的条件下, ...

  7. JAVA多线程之volatile 与 synchronized 的比较

    一,volatile关键字的可见性 要想理解volatile关键字,得先了解下JAVA的内存模型,Java内存模型的抽象示意图如下: 从图中可以看出: ①每个线程都有一个自己的本地内存空间--线程栈空 ...

  8. Java多线程之Runnable与Thread

    Java多线程之Thread与Runnable 一.Thread VS Runnable 在java中可有两种方式实现多线程,一种是继承Thread类,一种是实现Runnable接口:Thread类和 ...

  9. JAVA多线程之UncaughtExceptionHandler——处理非正常的线程中止

    JAVA多线程之UncaughtExceptionHandler——处理非正常的线程中止 背景 当单线程的程序发生一个未捕获的异常时我们可以采用try....catch进行异常的捕获,但是在多线程环境 ...

随机推荐

  1. .NET WebBroswer内存释放

    最近写的小说爬取工具遇到了性能瓶颈,使用多个Webbroswer控件预加载多个网页,内存会不断增加,达到400M左右,不能忍. 失败的例子 首先尝试把Webbroswer对象置为null,wb=nul ...

  2. Effective Objective-C 2.0 — 第8条:理解“对象等同性”这一概念

    第8条:理解“对象等同性”这一概念 若想检测对象的等同性,请提供“isEqual”与 hash 方法 相同的对象必须具有相同哈希码,但是两个哈希码相同的对象却未必相同. 不要盲目地逐个检测每条属性,而 ...

  3. AngularJS学习---REST和自定义服务(REST and Custom Services) ngResource step 11

    1.切换目录 git checkout step- npm start 2.效果图 效果图和step 10的没有什么差别,这里主要的改动都是代码,代码做了很多优化,这里效果图就不再贴出来了. 3.实现 ...

  4. Lumen 设置 timezone 时区

    Lumen 设置 timezone 时区 2015-06-19| wid| 后端开发 今天用 Lumen 框架写代码时, 也是初次体验 Lumen, 遇到了一个问题, 从数据库里查出的时间比数据库里保 ...

  5. NOIP2002 均分纸牌

    题一 均分纸牌 (存盘名: NOIPG1) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为: ...

  6. Java处理文件小例子--获取全国所有城市的坐标

    需求:前端展示数据,全国城市的坐标

  7. Python之文件的基本操作

    在python中,对文件的基本操作一共有如下四种: 1.打开文件 file_obj = open("文件路径","模式") 常用的打开文件模式有: r:以只读方 ...

  8. Unity 读取资源(图片)

    方法一: 采用Resource.Load方法读取,读取在Unity中Assets下Resources目录下的资源名(不采用后缀). //图片放在Asset/Resources/ Texture2D t ...

  9. 一篇年薪60万的JVM性能调优文章

    JVM 调优概述 性能定义 吞吐量 - 指不考虑 GC 引起的停顿时间或内存消耗,垃圾收集器能支撑应用达到的最高性能指标. 延迟 - 其度量标准是缩短由于垃圾啊收集引起的停顿时间或者完全消除因垃圾收集 ...

  10. 应用调试(三)oops

    目录 应用调试(三)oops 引入 配置内核打开用户oops CONFIG_DEBUG_USER user_debug 设置启动参数测试 打印用户堆栈 分析栈 main的调用 title: 应用调试( ...