貌似这样的叫解析几何
重点如何求得过光源到圆的切线与地板的交点x坐标,可以通过角度及距离来算,如图,
根据距离和半径可以求得角度a、b、r,自然也可以求得d1,d2.
至于方向问题,在求r得时候 可以使r = asin((p.x-c.x)/d) p为源点,c为圆心 ,d为两点距离。
若在反方向,自然r为负角 ,并不影响最后的结果。
排序后,统计区间就可以了。
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 505
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
struct point
{
double x,y;
double r;
point(double x=,double y=):x(x),y(y){}
}p[N];
struct node
{
double l,r;
}li[N],ans[N];
typedef point pointt;
pointt operator -(point a,point b)
{
return point(a.x-b.x,a.y-b.y);
}
double dis(point a)
{
return sqrt(a.x*a.x+a.y*a.y);
}
node cal(point a,point b)
{
double ang1,ang2,ang3,ang4;
double d = dis(a-b);
ang1 = asin(a.r/d);
ang2 = asin((b.x-a.x)/d);
ang3 = ang1+ang2;
ang4 = ang2-ang1;
//cout<<ang1<<" "<<ang2<<" "<<ang3<<" "<<ang4<<endl;
node ll;
double l = b.x-b.y*tan(ang3);
double r = b.x-b.y*tan(ang4);
ll.l = min(l,r);
ll.r = max(l,r);
return ll;
}
bool cmp(node a,node b)
{
return a.l<b.l;
}
int main()
{
int n,i;
point pp;
while(scanf("%d",&n)&&n)
{
scanf("%lf%lf",&pp.x,&pp.y);
for(i = ; i <= n; i++)
scanf("%lf%lf%lf",&p[i].x,&p[i].y,&p[i].r);
for(i = ; i <= n; i++)
{
li[i] = cal(p[i],pp);
}
sort(li+,li+n+,cmp);
int g = ;
ans[g].l = li[].l;
double te = li[].r;
for(i = ; i <= n; i++)
{
if(li[i].l>te)
{
ans[g].r = te;
ans[++g].l = li[i].l;
}
te = max(te,li[i].r);
}
ans[g].r = te;
for(i = ; i <= g; i++)
printf("%.2f %.2f\n",ans[i].l,ans[i].r);
puts("");
}
return ;
}