题目描述
题目链接:https://www.luogu.org/problemnew/show/P1387
在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长。
输入输出格式
输入格式:
输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m个数字,用空格隔开,0或1.
输出格式:
一个整数,最大正方形的边长
输入输出样例
输入样例#1:
4 4
0 1 1 1
1 1 1 0
0 1 1 0
1 1 0 1
输出样例#1:
2
算法解析:
来源:http://www.cnblogs.com/CXSheng/p/7801313.html
本题也可以参考洛谷题解
动态规划,求什么设什么。
设maxSize[i][j] = 以a[i][j]为右下角的最大正方形边长,
则maxSize[i][j] = k代表着a[i][j]左上方k*k区域内的数字都是1,
起初我想,如果a[i][j]是1,那么就可以把maxSize[i-1][j-1]代表的一大片矩形的边长扩大1.
即maxSize[i][j]=
① 0 ,a[i-1][j-1]==0 or 边界;
② maxSize[i-1][j-1]+1 , a[i-1][j-1]!=0;
但是!这是片面的,因为我忽略了a[i][j]正上方和正左方是否存在0的情况。
如图:
假设我们要求maxSize[i][j]对应着最右下角的红点,
浅蓝色的圈是maxSize[i-1][j-1]对结果的影响;
橙色的圈是a[i][j]正上方连续的1对结果的影响;
绿色的圈是a[i][j]正左方连续的1对结果的影响;
总图如下:
去三个值中最小的,记入maxSize[i][j]
综上可知,更新设定:
当a[i][j]为1时:
设maxSize[i][j] = 以a[i][j]为右下角的最大正方形边长,
LeftNum1[i][j] = a[i][j](不包括)正左边连续1的个数,
UpNum1[i][j] = a[i][j](不包括)正上方边连续1的个数,
于是maxSize[i][j] = min(maxSize[i-1][j-1]+1,leftNum1[i][j]+1,upNum1[i][j]+1)
注意边界情况即可。
#include<stdio.h>
#define MAXN 100
#define MAXM 100
int array[MAXN+][MAXM+]={};
int maxSize[MAXN+][MAXM+]={};
int leftNum1[MAXN+][MAXM+]={};
int upNum1[MAXN+][MAXM+]={};
int n,m;
int Figure(int tempN,int tempM)
{
if(tempN-==||tempM-==||array[tempN-][tempM-]==)
return ;
int min=maxSize[tempN-][tempM-]+;
if(leftNum1[tempN][tempM]+<min)
min=leftNum1[tempN][tempM]+;
if(upNum1[tempN][tempM]+<min)
min=upNum1[tempN][tempM]+;
return min;
}
void tPrint()
{
/* int i,j;
printf("\n");
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
//printf("%d ",[i][j]);
printf("%d ",upNum1[i][j]);//==============
printf("\n");
}
printf("\n");*/
}
int main()
{
int i,j;
scanf("%d%d",&n,&m);
int maxans=;
for(i=;i<=n;i++)
for(j=;j<=m;j++)
scanf("%d",&array[i][j]);
for(i=;i<=n;i++)
for(j=;j<=m;j++)
{
if(j==||array[i][j]==)
leftNum1[i][j]=;
else
{
if(array[i][j-]==)
leftNum1[i][j]=;
else
leftNum1[i][j]=leftNum1[i][j-]+;
} if(i==||array[i][j]==)
upNum1[i][j]=;
else
{
if(array[i-][j]==)
upNum1[i][j]=;
else
upNum1[i][j]=upNum1[i-][j]+;
}
}
for(i=;i<=n;i++)
for(j=;j<=m;j++)
{
maxSize[i][j]=Figure(i,j);
if(maxSize[i][j]>maxans)
maxans=maxSize[i][j];
}
tPrint();
printf("%d\n",maxans);
return ;
}
类似参考题目: