Description
Carol's puzzle is simple to state. She folds the paper in a certain manner and then uses a knife to cut through the folded paper. What Mike needs to do is to tell how many pieces the folded paper will turn into after it is cut. To eliminate the ambiguity, we can coordinate the paper as [0, 1] * [0, 1], with the coordinates of lower left corner (0, 0). A fold is denoted by two points (x1, y1) and (x2, y2) on the folding line, with which, the direction of the line is determined by from (x1, y1) to (x2, y2). Carol will always fold the paper from left to right relative to the directed line given (see Figure-1). The cut is determined by the two points on the cut line. Please note that the points given to determine the fold or the cut are not necessarily on the paper.
Input
Output
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <map>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII; const double PI = acos(-1.0);
const double EPS = 1e-; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (double t) const {
return Point(x * t, y * t);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
double l = length();
return Point(x / l, y / l);
}
}; double dist(const Point &p1, const Point &p2) {
return (p1 - p2).length();
} Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} double cross(const Point &sp, const Point &ep, const Point &op) {
return cross(sp - op, ep - op);
} struct Seg {
Point st, ed;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
};
typedef Seg Line;
//return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} double Point_to_Line(const Point &p, const Line &L) {
return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
} Point reflection(const Point &p, const Line &l) {
Point t = rotate(l.ed - l.st, -PI / );
return p + t.unit() * ( * Point_to_Line(p, l));
} vector<Point> p_vec, p_buf; struct Poly {
vector<int> id;
void add(int i) {
id.push_back(i);
}
Point& operator [] (int i) const {
return p_vec[id[i]];
}
}; vector<Poly> pol_vec, pol_buf;
map<PII, int> edge_map; Point paper[] = {Point(, ), Point(, ), Point(, ), Point(, )}; void reflection(const Poly &pol, const Line &l) {
for(int i = ; i < int(pol.id.size()); ++i)
if(pol.id[i] < int(p_buf.size())) p_buf[pol.id[i]] = reflection(pol[i], l);
} int intersection(int id1, int id2, const Point &p1, const Point &p2) {
map<PII, int>::iterator it = edge_map.find(make_pair(id1, id2));
if(it == edge_map.end()) {
p_vec.push_back(Line(p_vec[id1], p_vec[id2]) * Line(p1, p2));
edge_map[make_pair(id1, id2)] = edge_map[make_pair(id1, id2)] = p_vec.size() - ;
return p_vec.size() - ;
} else return it->second;
} void fold(const Point &p1, const Point &p2, const Poly &pol) {
Poly res1, res2;
int last_s = sgn(cross(p1, pol[], p2));
for(int i = ; i < int(pol.id.size()); ++i) {
int now_s = sgn(cross(p1, pol[i], p2));
if(now_s == ) {
res1.add(pol.id[i]);
res2.add(pol.id[i]);
} else if(now_s < ) {
if(last_s > ) {
int k = intersection(pol.id[i - ], pol.id[i], p1, p2);
res1.add(k);
res2.add(k);
}
res1.add(pol.id[i]);
} else if(now_s > ) {
if(last_s < ) {
int k = intersection(pol.id[i - ], pol.id[i], p1, p2);
res1.add(k);
res2.add(k);
}
res2.add(pol.id[i]);
}
last_s = now_s;
}
if(res1.id.size() > ) {
res1.add(res1.id[]);
reflection(res1, Line(p1, p2));
reverse(res1.id.begin(), res1.id.end());
pol_buf.push_back(res1);
}
if(res2.id.size() > ) {
res2.add(res2.id[]);
pol_buf.push_back(res2);
}
} void fold(const Point &p1, const Point &p2) {
p_buf = p_vec;
edge_map.clear();
pol_buf.clear();
for(int i = ; i < int(pol_vec.size()); ++i)
fold(p1, p2, pol_vec[i]);
pol_vec = pol_buf;
for(int i = ; i < int(p_buf.size()); ++i)
p_vec[i] = p_buf[i];
} void dfs(vector<bool> &vis, int id, const Line &l) {
vis[id] = true;
Poly &pol = pol_vec[id];
for(int i = ; i < int(pol.id.size() - ); ++i) {
if(sgn(cross(l.ed, pol[i], l.st)) == && sgn(cross(l.ed, pol[i + ], l.st)) == ) continue;
int id1 = pol.id[i], id2 = pol.id[i + ];
for(int j = ; j < int(pol_vec.size()); ++j) {
if(vis[j]) continue;
for(int k = ; k < int(pol_vec[j].id.size() - ); ++k) {
if(pol_vec[j].id[k] == id1 && pol_vec[j].id[k + ] == id2) {
dfs(vis, j, l);
break;
}
}
}
}
} int cut(const Line &l) {
int ret = ;
vector<bool> vis(p_vec.size());
for(int i = ; i < int(pol_vec.size()); ++i) {
if(!vis[i]) {
dfs(vis, i, l);
++ret;
}
}
return ret;
} int main() {
int T;
scanf("%d", &T);
Poly init_pol;
for(int i = ; i <= ; ++i) init_pol.add(i & );
while(T--) {
int n;
scanf("%d", &n);
p_vec.clear();
pol_vec.clear();
for(int i = ; i < ; ++i) p_vec.push_back(paper[i]);
for(int i = ; i <= ; ++i) pol_vec.push_back(init_pol);
Point p1, p2;
for(int i = ; i <= n; ++i) {
p1.read(), p2.read();
fold(p1, p2);
}
printf("%d\n", cut(Line(p1, p2)));
}
}