Five Dimensional Points CodeForces - 851C (计算几何+暴力)

时间:2023-03-08 15:38:56
Five Dimensional Points CodeForces - 851C (计算几何+暴力)
C. Five Dimensional Points
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given set of n points in 5-dimensional space. The points are labeled from 1 to n. No two points coincide.

We will call point a bad if there are different points b and c, not equal to a, from the given set such that angle between vectors Five Dimensional Points CodeForces - 851C (计算几何+暴力) and Five Dimensional Points CodeForces - 851C (计算几何+暴力) is acute (i.e. strictly less than Five Dimensional Points CodeForces - 851C (计算几何+暴力)). Otherwise, the point is called good.

The angle between vectors Five Dimensional Points CodeForces - 851C (计算几何+暴力) and Five Dimensional Points CodeForces - 851C (计算几何+暴力) in 5-dimensional space is defined as Five Dimensional Points CodeForces - 851C (计算几何+暴力), where Five Dimensional Points CodeForces - 851C (计算几何+暴力) is the scalar product and Five Dimensional Points CodeForces - 851C (计算几何+暴力) is length of Five Dimensional Points CodeForces - 851C (计算几何+暴力).

Given the list of points, print the indices of the good points in ascending order.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 103) — the number of points.

The next n lines of input contain five integers ai, bi, ci, di, ei (|ai|, |bi|, |ci|, |di|, |ei| ≤ 103)  — the coordinates of the i-th point. All points are distinct.

Output

First, print a single integer k — the number of good points.

Then, print k integers, each on their own line — the indices of the good points in ascending order.

Examples
input
Copy
6
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
output
Copy
1
1
input
Copy
3
0 0 1 2 0
0 0 9 2 0
0 0 5 9 0
output
Copy
0
Note

In the first sample, the first point forms exactly a Five Dimensional Points CodeForces - 851C (计算几何+暴力) angle with all other pairs of points, so it is good.

In the second sample, along the cd plane, we can see the points look as follows:

Five Dimensional Points CodeForces - 851C (计算几何+暴力)

We can see that all angles here are acute, so no points are good.

题意:

给你n个五维空间上的n个点。

让你求出“好”的点的数量。

“好”的点的定义是:

对于一个点i,不存在任何其他两个点,j,k, (三个点互不相同) 使得向量 i->j和向量  i - > k 是锐角。

思路:

判断两个向量的夹角是否是锐角可以通过向量的点积来判断。

五维空间的点积和二维三维的都一样,都是对应坐标相乘再相加。

然后每一次点积后的结果都可以得出这样的结论。

Five Dimensional Points CodeForces - 851C (计算几何+暴力)

如图,如果点积后的结果小于等于零,那么证明∠J I K不是锐角。

那么就得出结论 j 和k都不是good点,因为对于j,有i和k是的所成的角是锐角。

k同理。

而如果点积结果大于0,那么证明 角jik是锐角,所以i不是good point

需要一个数组vis来维护哪些点是已经被确定不是good点的,以此来降低时间复杂度。

注意到枚举的时候,第三个变量k,设为j+1开始枚举,这样不会让i,j,k每一次重复计算而导致答案错误。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int vis[maxn];
struct node
{
ll a,b,c,d,e;
}arr[maxn];
int n;
ll f(int i,int j,int k)
{
ll a1=arr[j].a-arr[i].a;
ll a2=arr[k].a-arr[i].a;
ll b1=arr[j].b-arr[i].b;
ll b2=arr[k].b-arr[i].b;
ll c1=arr[j].c-arr[i].c;
ll c2=arr[k].c-arr[i].c;
ll d1=arr[j].d-arr[i].d;
ll d2=arr[k].d-arr[i].d;
ll e1=arr[j].e-arr[i].e;
ll e2=arr[k].e-arr[i].e;
ll res=a1*a2+b1*b2+c1*c2+d1*d2+e1*e2;
return res;
}
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); gbtb;
cin>>n;
repd(i,,n)
{
cin>>arr[i].a>>arr[i].b>>arr[i].c>>arr[i].d>>arr[i].e;
}
repd(i,,n)
{
if(i==)
{
i=;
}
if(vis[i])
continue;
repd(j,,n)
{
if(i==j)
{
continue;
}
repd(k,j+,n)
{
if(k==j||k==i)
{
continue;
}
if(f(i,j,k)<=)
{
vis[j]=vis[k]=;
break;
}else
{
vis[i]=;
break;
}
}
if(vis[i])
break;
}
}
int ans=;
repd(i,,n)
{
if(!vis[i])
{
ans++;
}
}
cout<<ans<<endl;
repd(i,,n)
{
if(!vis[i])
{
cout<<i<<" ";
}
}cout<<endl;
return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}